51 research outputs found

    Inactivation of aldehyde dehydrogenase by disulfiram in the presence and absence of lipoic acid or dihydrolipoic acid : an in vitro study

    Get PDF
    The inhibition of aldehyde dehydrogenase (ALDH) by disulfiram (DSF) in vitro can be prevented and/or reversed by dithiothreitol (DTT), which is a well-known low molecular weight non-physiological redox reagent commonly used in laboratory experiments. These observations inspired us to ask the question whether the inhibition of ALDH by DSF can be preserved or abolished also by dihydrolipoic acid (DHLA), which is the only currently known low molecular weight physiological dithiol in the body of humans and other animals. It can even be metaphorized that DHLA is an "endogenous DTT". Lipoic acid (LA) is the oxidized form of DHLA. We investigated the inactivation of ALDH derived from yeast and rat liver by DSF in the presence or absence of LA or DHLA. The results clearly show that DHLA is able both to restore and protect ALDH activity blocked by DSF. The proposed mechanism is discussed

    Is the mechanism of nitroglycerin tolerance associated with aldehyde dehydrogenase activity? : a contribution to the ongoing discussion

    Get PDF
    The aim of the study presented here was an attempt to answer the question posed in the title: Is the mechanism of nitroglycerin tolerance associated with aldehyde dehydrogenase (ALDH) activity? Here, we investigated the effect of administration (separately or jointly) of lipoic acid (LA), nitroglycerin (GTN), and disulfiram (DSF; an irreversible in vivo inhibitor of all ALDH isozymes (including ALDH2)), on the development of tolerance to GTN. We also assessed the total activity of ALDH in the rat liver homogenates. Our data revealed that not only DSF and GTN inhibited the total ALDH activity in the rat liver, but LA also proved to be an inhibitor of this enzyme. At the same time, the obtained results demonstrated that the GTN tolerance did not develop in GTN, DSF and LA jointly treated rats, but did develop in GTN and DSF jointly treated rats. This means that the ability of LA to prevent GTN tolerance is not associated with the total ALDH activity in the rat liver. In this context, the fact that animals jointly receiving GTN and DSF developed tolerance to GTN, and in animals that in addition to GTN and DSF also received LA such tolerance did not develop, is - in our opinion - a sufficient premise to conclude that the nitrate tolerance certainly is not caused by a decrease in the activity of any of the ALDH isoenzymes present in the rat liver, including ALDH2. However, many questions still await an answer, including the basic one: What is the mechanism of tolerance to nitroglycerin

    Is aldehyde dehydrogenase inhibited by sulfur compounds? In vitro and in vivo studies

    Get PDF
    Aldehyde dehydrogenase (ALDH) catalyzes the critical step of ethanol metabolism, i.e. transformation of toxic acetaldehyde to acetic acid. It is a redox sensitive protein with the key Cys in its active site. Recently, it has been documented that activity of some proteins can be modified by sulfur-containing molecules called reactive sulfur species leading to the formation of hydro- persulfides. The aim of the present study was to examine whether ALDH activity can be modified in this way. Studies were performed in vitro using yeast ALDH and various reactive sulfur species, including Na2S, GSSH, K2Sx, Na2S2O3, and garlic-derived allyl sulfides. The effect of garlic-derived trisulfide on ALDH activity was also studied in vivo in the rat liver. The obtained results clearly demonstrated that ALDH could be regulated by sulfur species which inhibited its enzymatic activity. The results also suggested that not H2S but polysulfides or hydropersulfides were the oxidizing species responsible for this modification. This process was easily reversible by reducing agents. After the treatment with polysulfides or hydropersulfides the level of protein-bound sulfur increased, while the activity of the enzyme dramatically decreased. Moreover, the study demonstrated that ALDH activity was inhibited in vivo in the rat liver after garlic-derived trisulfide administration. This is the first study reporting the regulation of ALDH activity by sulfane sulfur species and the results suggest that it leads to the inhibition of the enzyme

    The effects of different garlic-derived allyl sulfides on anaerobic sulfur metabolism in the mouse kidney

    Get PDF
    Diallyl sulfide (DAS), diallyl disulfide (DADS) and diallyl trisulfide (DATS) are major oil-soluble organosulfur compounds of garlic responsible for most of its pharmacological effects. The present study investigated the influence of repeated intraperitoneally (ip) administration of DAS, DADS and DATS on the total level of sulfane sulfur, bound sulfur (S-sulfhydration) and hydrogen sulfide (H2S) and on the activity of enzymes, which catalyze sulfane sulfur formation and transfer from a donor to an acceptor in the normal mouse kidney, i.e., γ-cystathionase (CSE) and rhodanese (TST). The activity of aldehyde dehydrogenase (ALDH), which is a redox-sensitive protein, containing an –SH group in its catalytic center, was also determined. The obtained results indicated that all tested compounds significantly increased the activity of TST. Moreover, DADS and DATS increased the total sulfane sulfur level and CSE activity in the normal mouse kidney. ALDH activity was inhibited in the kidney after DATS administration. The results indicated also that none of the studied allyl sulfides affected the level of bound sulfur or H2S. Thus, it can be concluded that garlic-derived DADS and DATS can be a source of sulfane sulfur for renal cells but they are not connected with persulfide formation

    The effect of NaCl on the level of reduced sulfur compounds in rat liver : implications for blood pressure increase

    Get PDF
    Background: It is commonly known that excessive salt intake is a risk factor of hypertension. Currently, there is an increasing interest in reduced reactive sulfur species (RSS), mainly H2S and sulfane sulfur (SS) as new gasotransmitters showing vasorelaxant properties. The aim of the present study was to determine the effect of repeated administration of low sodium chloride dose included in physiological saline on blood pressure, on the level of RSS and activity of enzymes involved in their biosynthesis in the rat.Methods: Two separate experiments were carried out on male Wistar rats: one with intravenous injections of saline and the second one with intraperitoneal saline injections. Blood pressure was measured during the experiment. The level of RSS and other biochemical assays were conducted in the rat liver, because of an intense cysteine metabolism to RSS in this organ.Results: Intravenous administration of saline induced a significant increase in systolic blood pressure while intraperitoneal injections showed only a tendency towards increasing blood pressure. The RSS (H2S and SS) level as well as the activity of the main enzyme responsible for their production in the liver of animals after iv saline injections were decreased. Animals injected with physiological saline by ip route did not reveal any statistically significant differences in SS, H2S, and activities of sulfurtransferases, although a tendency to decrease in the RSS was observed.Conclusions: The repeated iv saline injection induced a slight hypertension accompanied by disturbances in anaerobic cysteine metabolism in the rat liver

    Lipoic acid as a possible pharmacological source of hydrogen sulfide/sulfane sulfur

    Get PDF
    The aim of the present study was to verify whether lipoic acid (LA) itself is a source of H2S and sulfane sulfur. It was investigated in vitro non-enzymatically and enzymatically (in the presence of rat tissue homogenate). The results indicate that both H2S and sulfane sulfur are formed from LA non-enzymatically in the presence of environmental light. These results suggest that H2S is the first product of non-enzymatic light-dependent decomposition of LA that is, probably, next oxidized to sulfane sulfur-containing compound(s). The study performed in the presence of rat liver and kidney homogenate revealed an increase of H2S level in samples containing LA and its reduced form dihydrolipoic acid (DHLA). It was accompanied by a decrease in sulfane sulfur level. It seems that, in these conditions, DHLA acts as a reducing agent that releases H2S from an endogenous pool of sulfane sulfur compounds present in tissues. Simultaneously, it means that exogenous LA cannot be a direct donor of H2S/sulfane sulfur in animal tissues. The present study is an initial approach to the question whether LA itself is a donor of H2S/sulfane sulfur

    Inactivation of aldehyde dehydrogenase by nitroglycerin in the presence and absence of lipoic acid and dihydrolipoic acid : implications for the problem of differential effects of lipoic acid "in vitro" and "in vivo"

    Get PDF
    Lipoic acid (LA-(SS), LA) and its reduced form - dihydrolipoic acid DHLA-(SH)2, DHLA) are synthesized mainly in the mammalian liver. In this study, we investigated in vitro the inactivation of yeast aldehyde dehydrogenase (ALDH) by nitroglycerin (GTN) in the presence and absence of LA and DHLA. In vivo studies were performed to answer the question whether LA administered jointly with GTN for 8 days will affect the ALDH activity in the rat liver. The results indicated that in vitro both LA and DHLA restored and protected ALDH activity against GTN-induced inactivation, while treatment of rats with LA and GTN in combination did not provide any protection against GTN-induced ALDH inhibition. In summary, the obtained results seem to confirm earlier reports indicating the differential effects of LA in vitro and in vivo
    corecore