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This research studies the effects of titanium added in an amount up to 0.13 wt.% on the microstructure and
mechanical properties. The research was conducted for thin-walled iron castings with 3-5 mm wall
thickness and for the reference casting with 13 mm wall thickness to achieve various cooling rates.
Microstructural changes were evaluated by analyzing quantitative data sets obtained by image analyzer
and also using scanning electron microscope. Metallographic examination revealed in thin-walled castings a
significant effect of the addition of Ti to compacted graphite, much stronger in comparison with castings
with thicker sections. Moreover, thin-walled castings with high degrees of inoculation and which have been
solidified under high cooling rates have a homogeneous structure, free of chills, and good mechanical
properties, which may predispose them for potential use as substitutes for aluminum alloy castings in
diverse applications.
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1. Introduction

Compacted graphite iron (CGI) also known as the vermicular
graphite cast iron is an alloy with attractive features that is used
in the automotive industry (Ref 1-4) for brake discs and brake
drums, exhaust manifolds, engine heads, and diesel engine
blocks, and is traditionally manufactured from gray cast iron.
CGI allows the manufacture of diesel engines with better
combustion and performance. CGI may be used for light
castings with good mechanical properties and performance,
with especially good vibration damping capacity, good thermal
conductivity (Ref 5, 6), higher pressures, and is relatively low
production cost (Ref 7). From the point of view of economics
and ecology, thin-walled castings of CGI can compete in terms
of mechanical properties with the ‘‘light’’ aluminum alloy
castings.

The main factors that influence the structure of CGI castings
are chemical composition, cooling rate, liquid treatment, and
heat treatment (Ref 8, 9). The cooling rate of a casting is
primarily a function of its section size, pouring temperature,
and the ability of the material mold to absorb heat. The process
of obtaining thin-walled castings is not simple, because it is
associated with a wide range of cooling rates at the beginning
of graphite eutectic solidification (Ref 10). With increasing
cooling rates in thin-walled CGI castings, thermal undercooling

increases and graphite gradually becomes nodular, resulting in
an increased nodule count and lower compact graphite ratio.
Therefore, the production of thin-walled compacted iron
castings is more difficult than that of thicker section iron
(Ref 11).

The formation of CGI is a very difficult process to control
with only a narrow margin of residual Mg: too much Mg will
give an excess of nodules, whereas too little Mg will lead to the
formation of gray iron flake structures (Ref 12). From the
literature (Ref 7), it follows that even at magnesium levels as
low as 0.01% it is not possible to obtain acceptable CGI with
wall thicknesses of 4 mm due to excessive graphite nodularity.
The treatment of iron with addition of antispheroidizing
elements (Al, Bi, Ti, Zr, Sb) has much wider industrial
application. The use of Ti as a key alloying elements has
advantages and disadvantages. Magnesium-titanium combina-
tion helps to extend the working range of magnesium to
achieve successful production of CGI castings (Ref 8, 9). A
major concern with regard to titanium additions is contamina-
tion of casting returns and reduced machinability (Ref 1).
Foundry practice and good production discipline could not be
sufficient to maintain the consistency of the desired micro-
structure without the use of antispheroidizing elements such as
titanium. The literature provides limited data (Ref 1, 7, 13) on
the influence of Ti addition on high cooling rate-structure
relations of CGI, which is a crucial property in the formation of
thin-walled castings. This article presents an analysis of the
addition of Ti on the microstructure and mechanical properties
of thin-walled castings with different wall thicknesses.

2. Experimental

The experimental melts were done in an electric induction
furnace of intermediate frequency in a 15 kg capacity crucible.
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The furnace charge consisted of the following materials:
Sorelmetal, technically pure silicon, Fe-Mn, Fe-S, and steel
scrap. After metal heating to a temperature of 1490 �C, the
bath was held for 2 min and then, vermicularization and
inoculation operations were performed by a bell method. For
the vermicularization, the foundry alloy Fe-Si-Mg (6% Mg) as
well as Fe-Ti in an amount given in Table 1 were used, while
the inoculation was done by means of the Fe-Si alloy (75% Si,
0.75-1.25% Ca, 0.75-1.25% Ba, 0.75-1.25% Al) inoculant in
an amount of 0.6 wt.%. The pouring temperature was
1400 �C. In this experiment, CGI plate castings with section
sizes of 3, 5, and 13 mm were produced. The sand mold was
prepared using conventional green molding sand made of
silica sand, bentonite (7 wt.%), water/bentonite ratio amounts
to 0.4%, and a granularity of 100-200 lm. In addition, they
were instrumented with Pt/PtRh10 thermocouples in a diam-
eter of 0.1 mm entering a two-hole Al2O3 tube. The thermo-
couple tips were located in the geometrical center of each
mold cavity normal to the heat transfer flow to improve the
measurement accuracy. An Agilent 34970A electronic module
was employed for numerical temperature recording. Figure 1

shows the examples of cooling curves of the investigated thin-
walled iron castings.

Chemical compositions are tabulated in Table 2.
Metallographic characterization was made using a Leica

MEF 4M microscope and QWin v3.5 quantitative analyzer at
various magnifications to observe graphite morphology and
matrix. The analysis was based on the use of a line scan of the
measuring area. This method counts the number of graphite
nodules which have been cut by the line scan. The final result
was the arithmetical average of the graphite nodule fraction in
the microstructure during the scan of at least five areas of the
central part of the sample. In addition, the fractured surfaces
were examined by a JEOL JSM-550LV scanning electron
microscope (SEM) operated at 20 kV.

Brinell hardness measurements were made in an HPO-250
hardness tester and tensile testing was performed in a universal
Zwick/Roell Z050 following the ASTM E8M standard. Spec-
imen dimensions are shown in Fig. 2.

3. Experimental Results and Analysis

3.1 Analysis of Microstructure

Figures 3 to 5 show the exhibited microstructures found in
castings with different wall thicknesses from heats I-IV.

The results of metallographic examination are given in
Table 3.

Metallographic examination revealed a significant effect of
the addition of Ti to compacted graphite, especially in thin-
walled castings. The addition of Ti requires the addition of

Table 1 Amount of vermicularizing agent and Fe-Ti

Heat no. Vermicularizing agent, wt.% Fe-Ti, wt.%

I 0.5 …
II 0.5 0.15
III 0.7 0.20
IV 0.7 0.40

Fig. 1 Cooling curve (solid line) and cooling rate curve (dotted line) in samples with different wall thicknesses (heat no. IV): (a) 3 mm,
(b) 5 mm. Q is the cooling rate of ductile iron at the onset of graphite eutectic solidification, Ts is the equilibrium graphite eutectic solidification
temperature

Table 2 Result of chemical compositions

Heat no.
C,

wt.%
Si,

wt.%
Mn,
wt.%

P,
wt.%

S,
wt.%

Cr,
wt.%

Ni,
wt.%

Cu,
wt.%

V,
wt.%

Al,
wt.%

Ti,
wt.%

Mg,
wt.%

I 3.63 2.47 0.03 0.026 0.017 0.03 0.004 0.045 0.007 0.010 0.009 0.010
II 3.66 2.55 0.04 0.027 0.020 0.03 0.005 0.044 0.011 0.010 0.070 0.005
III 3.65 2.53 0.05 0.030 0.010 0.03 0.030 0.010 0.010 0.010 0.095 0.020
IV 3.60 2.55 0.05 0.023 0.018 0.04 0.040 0.060 0.010 0.021 0.133 0.021
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extra magnesium to stay safely away from the risk of formation
of graphite flake structures (see Fig. 3b). Studies show that Ti
addition reduces the graphite nodule fraction in cast iron
(G = 3 mm) from 73% for the base iron to 34% for cast iron
with the addition of 0.13% Ti. It is usual to set a limit of 20%
nodularity for CGI specifications (Ref 8, 9, 14). In the case of
thin-walled castings, the natural tendency of CGI is to solidify
with higher nodularity, which may result in the thin outer walls
(<4-5 mm) having up to 50% nodularity (Ref 1). In the case
of thin-walled castings with greater wall thickness (G = 5 mm)
after the addition of 0.13% Ti the graphite fraction is reduced
to below 20%, thus meeting the ASTM standards (Ref 14).
According to one study (Ref 13), the addition of 0.15%
titanium increases the compacted graphite fraction in castings
with a wall thickness of 30-80 mm only by approximately
10%, and has a negligible impact on the mechanical properties.
This study shows that the use of 0.13% Ti in thin-walled

castings has a much stronger effect on the solidification of
compacted graphite in comparison with castings with thicker
sections. Analysis of the cast iron matrix shows that the
addition of Ti slightly decreases the ferrite fraction in the
casting (Table 3). Titanium causes solidification of carbides
(TiC) in cast iron. Figure 6 shows crystals of TiC in the cast
iron microstructure.

Titanium carbides in the form of faceted crystals are evenly
distributed in iron matrix. Metallographic analysis shows that
their maximum size is <4 lm, and their fraction is much lower
than 1%.

The process of obtaining thin-walled castings is not easy, as
it is associated with a high range of cooling rates. This
contributes to a greater tendency toward the formation of
defects, in particular structural inhomogeneity and the occur-
rence of chills (Ref 10). Knowledge of the effect of techno-
logical factors on the cooling rate and on the physicochemical
state of liquid iron is of fundamental importance for the
preparation of thin-walled castings with good mechanical
properties and performance, and without casting defects.
Characteristic features of thin-walled castings are also signif-
icant changes of cooling rate during insignificant wall thickness
variation. The thermal analysis (Fig. 1) shows that the change
in wall thickness from 5 to 3 mm results in a significant increase
in the cooling rate from Q = 10.0 �C/s to Q =. 26.6 �C/s. This
causes shortening of the solidification time from 40 to 18 s and
the risk of chill occurrence in cast iron. For this purpose, in

Fig. 3 Microstructure of castings with wall thickness of 3 mm: (a) heat no. I, (b) heat no. II, (c) heat no. III, (d) heat no. IV. Mag. 1009. No
etched samples

Fig. 2 Dimensions of mechanical tensile specimens
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thin-walled nodular or CGI castings a high degree of inocu-
lation is required (Ref 15). In the case of CGI, it is particularly
disadvantageous in view of the fact that increasing nucleation
potential decreases the amount of compacted graphite and
increases the graphite nodule fraction. This study shows that
the addition of Ti enables, in thin-walled castings with a high
degree of inoculation and solidified under high cooling rate, the
obtention of a homogeneous structure of cast iron, free of chills,
with a high compacted graphite fraction.

3.2 Mechanical Properties of Experimental Alloys

The effects of Ti addition and casting size on the mechanical
properties of CGI castings are depicted in Fig. 7.

From the results shown in Fig. 7 one can see that no
significant increase in the hardness occurs for Ti addition up to
0.13%. It can be seen that the tensile strength slightly increases
with the addition of Ti up to 0.09% Ti. Further increasing the
titanium causes a decrease in both the tensile strength and the
elongation of thin-walled iron castings. This is due to an
increase in the compacted graphite fraction in the cast iron
microstructure, with a higher length to thickness ratio (Fig. 3d
to 5d). In the case of reference casting (G = 13 mm), the
addition of Ti does not appreciably affect the Rm or HBW,
while elongation is lowered to the level of 6.4%.

In conclusion, It can be said that the addition of titanium up to
0.13 wt.% effectively increases the compacted graphite fraction
and pearlite percentage, owing to the anti-spheroidising and

carbide-forming potential of Ti. Increasing the compacted graphite
fraction reduces ductility, while increasing pearlite percentage
strengthens the metallic matrix. These contradictory effects
resulted in CGI castings with added titanium having relatively
unchanged tensile strength and hardness. The structural charac-
teristics, including the absence of chills, uniformly distributedTiC,
ferritic-pearlitic matrix, and high fraction of compacted graphite
predispose thin-walledCGI castings for potential use as substitutes
for aluminum alloy castings in diverse applications.

4. Conclusions

From this study, the following conclusions can be drawn:

1. From the experiments it is concluded that even at Mg levels
as low as 0.01% it is not possible to obtain acceptable fraction
of compacted graphite in thin-walled castings (G £ 5 mm)
because of excessive nodularity. The introduction of Ti in
amounts up to 0.13% iron allows a high proportion of com-
pacted (vermicular) graphite in thin-walled castings.

2. A homogeneous structure and free of chills was obtained
despite high cooling rates that are typical for thin-walled
castings. The addition of Ti results in solidification of Ti
carbides in the form of faceted crystals, which are uni-
formly distributed in the iron matrix. Their maximum size
is <4 lm, and their volume fraction is much <1%.

Fig. 4 Microstructure of castings with wall thickness of 5 mm: (a) heat no. I, (b) heat no. II, (c) heat no. III, (d) heat no. IV. Mag. 1009. No
etched samples
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Fig. 5 Microstructure of castings with wall thickness of 13 mm: (a) heat no. I, (b) heat no. II, (c) heat no. III, (d) heat no. IV. Mag. 1009. No
etched samples

Table 3 The results of metallographic examination

Heat no.

Graphite nodule fraction, % Ferrite fraction, %

TiC, %G = 3 mm G = 5 mm G = 13 mm G = 3 mm G = 5 mm G = 13 mm

I 73 47 20 40 65 90 Absence
II Absence Absence Absence 15 85 90 <1
III 46 29 17 40 74 85 <1
IV 34 17 15 30 56 90 <1

G, Wall thickness of casting

Fig. 6 (a) Microstructure of castings with a wall thickness of 5 mm from heat no. IV, DIC, (b, c) SEM. Fractographs of tensile tested
specimens
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3. The results show that the addition of Ti causes no significant
deleterious influence on the mechanical properties of thin-
walled CGI castings. Good mechanical properties may pre-
dispose thin-walled CGI castings for potential use as substi-
tutes for aluminum alloy castings in diverse applications.
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