20,963 research outputs found
New detections of H2O masers in planetary nebulae and post-AGB stars using the Robledo-70m antenna
Aims: We investigated the possible relationship between the evolutionary
stage of post-AGB stars and planetary nebulae (PNe) and the presence of water
masers in their envelopes.
Methods: We have used NASA's 70-m antenna in Robledo de Chavela (Spain) to
search for the water maser transition at 22235.08 MHz, towards a sample of 105
sources with IRAS colour characteristic of post-AGB stars and PNe at
declination >-32 deg. 83% of the sources in the sample are post-AGB stars, 15%
PNe or PN candidates, while only 2% seem to be HII regions.
Results: We have detected five water masers, of which four are reported for
the first time: two in PNe (IRAS 17443-2949 and IRAS 18061-2505), a ``water
fountain'' in a post-AGB star (IRAS 16552-3050), and one in a source previously
catalogued as a PN, but whose classification is uncertain (IRAS 17580-3111).
Conclusions: The unexpected detections of water masers in two objects among
the small subset of PNe led us to suggest that the PNe harbouring water masers
are a special type of massive, rapidly evolving PNe.Comment: 15 pages, 7 figures. Accepted for publication in Astronomy and
Astrophysic
An updated catalog of OH-maser-emitting planetary nebulae
Aims. We studied the characteristics of planetary nebulae (PNe) that show
both OH maser and radio continuum emission (hereafter OHPNe). These have been
proposed to be very young PNe, and therefore, they could be key objects for
understanding the formation and evolution of PNe. Methods. We consulted the
literature searching for interferometric observations of radio continuum and OH
masers toward evolved stars, including the information from several surveys. We
also processed radio continuum and OH maser observations toward PNe in the Very
Large Array data archive. The high positional accuracy provided by
interferometric observations allow us to confirm or reject the association
between OH maser and radio continuum emission. Results. We found a total of six
PNe that present both OH maser and radio continuum emissions, as confirmed with
radio interferometric observations. These are bona fide OHPNe. The confirmed
OHPNe present a bipolar morphology in resolved images of their ionized emission
at different wavelengths, suggesting that the OH maser emission in PNe is
related to nonspherical mass-loss phenomena. The OH maser spectra in PNe
present a clear asymmetry, tending to show blueshifted emission with respect to
the systemic velocity. Their infrared colors suggest that most of these objects
are very young PNe. OHPNe do not form a homogeneous group, and seem to
represent a variety of different evolutionary stages. We suggest that OH masers
pumped in the AGB phase may disappear during the post-AGB phase, but reappear
once the source becomes a PN and its radio continuum emission is amplified by
the OH molecules. Therefore, OH maser emission could last significantly longer
than the previously assumed 1000 yr after the end of the AGB phase. This maser
lifetime may be longer in PNe with more massive central stars, which ionize a
larger amount of gas in the envelope.Comment: 16 pages, 5 figures, 4 tables. Accepted for publication by Astronomy
& Astrophysic
Quantum Phase Transitions detected by a local probe using Time Correlations and Violations of Leggett-Garg Inequalities
In the present paper we introduce a way of identifying quantum phase
transitions of many-body systems by means of local time correlations and
Leggett-Garg inequalities. This procedure allows to experimentally determine
the quantum critical points not only of finite-order transitions but also those
of infinite order, as the Kosterlitz-Thouless transition that is not always
easy to detect with current methods. By means of simple analytical arguments
for a general spin- Hamiltonian, and matrix product simulations of
one-dimensional and anisotropic models, we argue that
finite-order quantum phase transitions can be determined by singularities of
the time correlations or their derivatives at criticality. The same features
are exhibited by corresponding Leggett-Garg functions, which noticeably
indicate violation of the Leggett-Garg inequalities for early times and all the
Hamiltonian parameters considered. In addition, we find that the infinite-order
transition of the model at the isotropic point can be revealed by the
maximal violation of the Leggett-Garg inequalities. We thus show that quantum
phase transitions can be identified by purely local measurements, and that
many-body systems constitute important candidates to observe experimentally the
violation of Leggett-Garg inequalities.Comment: Minor changes, 11 pages, 11 figures. Final version published in Phys.
Rev.
Neural Network Local Navigation of Mobile Robots in a Moving Obstacles Environment
IF AC Intelligent Components and Instruments for Control Applications, Budapest, Hungary, 1994This paper presents a local navigation method based on generalized predictive control. A modified cost function to avoid moving and static obstacles is presented. An Extended Kaiman Filter is proposed to predict the motions of the obstacles. A Neural Network implementation of this method is analysed. Simulation results are shown.Ministerio de Ciencia y Tecnología TAP93-0408Ministerio de Ciencia y Tecnología TAP93-058
Quantum Hysteresis in Coupled Light-Matter Systems
We investigate the non-equilibrium quantum dynamics of a canonical
light-matter system, namely the Dicke model, when the light-matter interaction
is ramped up and down through a cycle across the quantum phase transition. Our
calculations reveal a rich set of dynamical behaviors determined by the cycle
times, ranging from the slow, near adiabatic regime through to the fast, sudden
quench regime. As the cycle time decreases, we uncover a crossover from an
oscillatory exchange of quantum information between light and matter that
approaches a reversible adiabatic process, to a dispersive regime that
generates large values of light-matter entanglement. The phenomena uncovered in
this work have implications in quantum control, quantum interferometry, as well
as in quantum information theory.Comment: 9 pages and 4 figure
Ideal codes over separable ring extensions
This paper investigates the application of the theoretical algebraic notion
of a separable ring extension, in the realm of cyclic convolutional codes or,
more generally, ideal codes. We work under very mild conditions, that cover all
previously known as well as new non trivial examples. It is proved that ideal
codes are direct summands as left ideals of the underlying non-commutative
algebra, in analogy with cyclic block codes. This implies, in particular, that
they are generated by an idempotent element. Hence, by using a suitable
separability element, we design an efficient algorithm for computing one of
such idempotents
- …