2 research outputs found

    A complex storm system in Saturn's north polar atmosphere in 2018

    Get PDF
    Saturn’s convective storms usually fall in two categories. One consists of mid-sized storms ~2,000¿km wide, appearing as irregular bright cloud systems that evolve rapidly, on scales of a few days. The other includes the Great White Spots, planetary-scale giant storms ten times larger than the mid-sized ones, which disturb a full latitude band, enduring several months, and have been observed only seven times since 1876. Here we report a new intermediate type, observed in 2018 in the north polar region. Four large storms with east–west lengths ~4,000–8,000¿km (the first one lasting longer than 200 days) formed sequentially in close latitudes, experiencing mutual encounters and leading to zonal disturbances affecting a full latitude band ~8,000¿km wide, during at least eight months. Dynamical simulations indicate that each storm required energies around ten times larger than mid-sized storms but ~100 times smaller than those necessary for a Great White Spot. This event occurred at about the same latitude and season as the Great White Spot in 1960, in close correspondence with the cycle of approximately 60 years hypothesized for equatorial Great White Spots.Peer ReviewedPostprint (author's final draft

    A complex storm system in Saturn's north polar atmosphere in 2018

    No full text
    Saturn’s convective storms usually fall in two categories. One consists of mid-sized storms ~2,000¿km wide, appearing as irregular bright cloud systems that evolve rapidly, on scales of a few days. The other includes the Great White Spots, planetary-scale giant storms ten times larger than the mid-sized ones, which disturb a full latitude band, enduring several months, and have been observed only seven times since 1876. Here we report a new intermediate type, observed in 2018 in the north polar region. Four large storms with east–west lengths ~4,000–8,000¿km (the first one lasting longer than 200 days) formed sequentially in close latitudes, experiencing mutual encounters and leading to zonal disturbances affecting a full latitude band ~8,000¿km wide, during at least eight months. Dynamical simulations indicate that each storm required energies around ten times larger than mid-sized storms but ~100 times smaller than those necessary for a Great White Spot. This event occurred at about the same latitude and season as the Great White Spot in 1960, in close correspondence with the cycle of approximately 60 years hypothesized for equatorial Great White Spots.Peer Reviewe
    corecore