48 research outputs found

    A white dwarf bound to the transiting planetary system WASP-98

    Get PDF
    WASP-98 is a planetary system containing a hot Jupiter transiting a late-G dwarf. A fainter star 12″ distant has previously been identified as a white dwarf, with a distance and proper motion consistent with a physical association with the planetary system. We present spectroscopy of the white dwarf, with the aim of determining its mass, radius and temperature and hence the age of the system. However, the spectra show the featureless continuum and lack of spectral lines characteristic of the DC class of white dwarfs. We therefore fitted theoretical white dwarf spectra to the ugriz apparent magnitudes and Gaia DR2 parallax of this object in order to determine its physical properties and the age of the system. We find that the system is old, with a lower limit of 3.6 Gyr, but theoretical uncertainties preclude a precise determination of its age. Its kinematics are consistent with membership of the thick disc, but do not allow us to rule out the thin-disc alternative. The old age and low metallicity of the system suggest it is subject to an age-metallicity relation, but analysis of the most metal-rich and metal-poor transiting planetary systems yields only insubstantial evidence of this. We conclude that the study of bound white dwarfs can yield independent ages to planetary systems, but such analysis may be better-suited to DA and DB rather than DC white dwarfs

    Scars of intense accretion episodes at metal-rich white dwarfs

    Get PDF
    A re-evaluation of time-averaged accretion rates at DBZ-type white dwarfs points to historical, time-averaged rates significantly higher than the currently observed episodes at their DAZ counterparts. The difference between the ongoing, instantaneous accretion rates witnessed at DAZ white dwarfs, which often exceed 10 8gs -1, and those inferred over the past 10 5-10 6yr for the DBZ stars can be of a few orders of magnitude, and therefore must result from high-rate episodes of tens to hundreds of years so that they remain undetected to date. This paper explores the likelihood that such brief, intense accretion episodes of gas-phase material can account for existing data. For reasonable assumptions about the circumstellar gas, accretion rates approaching or exceeding 10 15gs -1 are possible, similar to rates observed in quiescent cataclysmic variables, and potentially detectable with future X-ray missions or wide-field monitoring facilities. Gaseous debris that is prone to such rapid accretion may be abundant immediately following a tidal disruption event via collisions and sublimation, or if additional bodies impinge upon an extant disc. Particulate disc matter accretes at or near the Poynting-Robertson drag rate for long periods between gas-producing events, consistent with rates inferred for dusty DAZ white dwarfs. In this picture, warm DAZ stars without infrared excesses have rates consistent with accretion from particulate discs that remain undetected. This overall picture has implications for quasi-steady state models of accretion and the derived chemical composition of asteroidal debris in DBZ white dwarfs

    Are exoplanetesimals differentiated?

    Get PDF
    Metals observed in the atmospheres of white dwarfs suggest that many have recently accreted planetary bodies. In some cases, the compositions observed suggest the accretion of material dominantly from the core (or the mantle) of a differentiated planetary body. Collisions between differentiated exoplanetesimals produce such fragments. In this work, we take advantage of the large numbers of white dwarfs where at least one siderophile (core-loving) and one lithophile (rock-loving) species have been detected to assess how commonly exoplanetesimals differentiate. We utilise N-body simulations that track the fate of core and mantle material during the collisional evolution of planetary systems to show that most remnants of differentiated planetesimals retain core fractions similar to their parents, whilst some are extremely core-rich or mantle-rich. Comparison with the white dwarf data for calcium and iron indicates that the data are consistent with a model in which 66−6+4%66^{+4}_{-6}\% have accreted the remnants of differentiated planetesimals, whilst 31−5+5%31^{+5}_{-5}\% have Ca/Fe abundances altered by the effects of heating (although the former can be as high as 100%100\%, if heating is ignored). These conclusions assume pollution by a single body and that collisional evolution retains similar features across diverse planetary systems. These results imply that both collisions and differentiation are key processes in exoplanetary systems. We highlight the need for a larger sample of polluted white dwarfs with precisely determined metal abundances to better understand the process of differentiation in exoplanetary systems

    Broadening of Ly α by neutral helium in DBA white dwarfs

    Get PDF
    Traces of photospheric hydrogen are detected in at least half of all white dwarfs with heliumdominated atmospheres through the presence of Hα in high-quality optical spectroscopy. Previous studies have noted significant discrepancies between the hydrogen abundances derived from Hα and Ly α for a number of stars where ultraviolet spectroscopy is also available. We demonstrate that this discrepancy is caused by inadequate treatment of the broadening of Ly α by neutral helium. When fitting Hubble Space Telescope far-ultraviolet spectroscopy of 17 DB white dwarfs using our new line profile calculations, we find good agreement between log (NH/NHe) measured from Ly α and Hα. Larger values of log (NH/NHe) based on Ly α are still found for three stars, which are among the most distant in our sample, and we show that a small amount of interstellar absorption from neutral hydrogen can account for this discrepancy

    Evidence for bimodal orbital separations of white dwarf-red dwarf binary stars

    Get PDF
    We present the results of a radial velocity survey of 20 white dwarf plus M dwarf binaries selected as a follow up to a Hubble Space Telescope study that aimed to spatially resolve suspected binaries. Our candidates are taken from the list of targets that were spatially unresolved with Hubble. We have determined the orbital periods for 16 of these compact binary candidates. The period distribution ranges from 0.141 to 9.16 d and peaks near 0.6 d. The original sample therefore contains two sets of binaries, wide orbits (≈100–1000 au) and close orbits (≲1–10 au), with no systems found in the ≈10–100 au range. This observational evidence confirms the bimodal distribution predicted by population models and is also similar to results obtained in previous studies. We find no binary periods in the months to years range, supporting the post-common envelope evolution scenario. One of our targets, WD 1504+546, was discovered to be an eclipsing binary with a period of  0.931 d

    GD 424 - A helium-atmosphere white dwarf with a large amount of trace hydrogen in the process of digesting a rocky planetesimal

    Get PDF
    The photospheric metal pollution of white dwarfs is now well established as the signature of the accretion of planetary debris. However, the origin of the trace hydrogen detected in many white dwarfs with helium atmospheres is still debated. Here, we report the analysis of GD 424: a metal-polluted, helium-atmosphere white dwarf with a large amount of trace hydrogen. We determined the atmospheric parameters using a hybrid analysis that combines the sensitivity of spectroscopy to the atmospheric composition, log(H/He), with that of photometry and astrometry to the effective temperature, Teff, and surface gravity, log g. The resulting white dwarf mass, radius, and cooling age are \mbox{M_{\mathrm{WD}}}=0.77\pm 0.01\, \mbox{\mathrm{M}_{\odot }}, \mbox{R_{\mathrm{WD}}}=0.0109\pm 0.0001\, \mbox{\mathrm{R}_{\odot }}, and τcool = 215 ± 10 Myr, respectively. We identified and measured the abundances of 11 photospheric metals and argue that the accretion event is most likely either in the increasing or in steady state, and that the disrupted planetesimal resembles either CI chondrites or the bulk Earth in terms of its composition. We suggest that the observed 1.33 × 1022 g of trace hydrogen in GD 424 was at least partly acquired through accretion of water-rich planetary debris in an earlier accretion episode

    Horizontal spreading of planetary debris accreted by white dwarfs

    Get PDF
    White dwarfs with metal-polluted atmospheres have been studied widely in the context of the accretion of rocky debris from evolved planetary systems. One open question is the geometry of accretion and how material arrives and mixes in the white dwarf surface layers. Using the three-dimensional (3D) radiation hydrodynamics code CO5BOLD, we present the first transport coefficients in degenerate star atmospheres that describe the advection–diffusion of a passive scalar across the surface plane. We couple newly derived horizontal diffusion coefficients with previously published vertical diffusion coefficients to provide theoretical constraints on surface spreading of metals in white dwarfs. Our grid of 3D simulations probes the vast majority of the parameter space of convective white dwarfs, with pure-hydrogen atmospheres in the effective temperature range of 6000–18 000 K and pure-helium atmospheres in the range of 12 000–34 000 K. Our results suggest that warm hydrogen-rich atmospheres (DA; ≳13000 K) and helium-rich atmospheres (DB and DBA; ≳30000 K) are unable to efficiently spread the accreted metals across their surface, regardless of the time dependence of accretion. This result may be at odds with the current non-detection of surface abundance variations in white dwarfs with debris discs. For cooler hydrogen- and helium-rich atmospheres, we predict a largely homogeneous distribution of metals across the surface within a vertical diffusion time-scale. This is typically less than 0.1 per cent of disc lifetime estimates, a quantity that is revisited in this paper using the overshoot results. These results have relevance for studies of the bulk composition of evolved planetary systems and models of accretion disc physics

    White dwarfs with planetary remnants in the era of Gaia - I. Six emission line systems

    Get PDF
    White dwarfs with emission lines from gaseous debris discs are among the rarest examples of planetary remnant hosts, but at the same time they are key objects for studying the final evolutionary stage of planetary systems. Making use of the large number of white dwarfs identified in Gaia Data Release 2 (DR2), we are conducting a survey of planetary remnants and here we present the first results of our search: six white dwarfs with gaseous debris discs. This first publication focuses on the main observational properties of these objects and highlights their most unique features. Three systems in particular stand out: WD J084602.47+570328.64 displays an exceptionally strong infrared excess that defies the standard model of a geometrically thin, optically thick dusty debris disc; WD J213350.72+242805.93 is the hottest gaseous debris disc host known with \mbox{T_{\mathrm{eff}}}=29\,282 K; and WD J052914.32-340108.11 in which we identify a record number of 51 emission lines from five elements. These discoveries shed light on the underlying diversity in gaseous debris disc systems and bring the total number of these objects to 21. With these numbers we can now start looking at the properties of these systems as a class of objects rather than on a case-by-case basis

    An irradiated brown-dwarf companion to an accreting white dwarf

    Get PDF
    Interacting compact binary systems provide a natural laboratory in which to study irradiated substellar objects. As the mass-losing secondary (donor) in these systems makes a transition from the stellar to the substellar regime, it is also irradiated by the primary (compact accretor)1, 2. The internal and external energy fluxes are both expected to be comparable in these objects, providing access to an unexplored irradiation regime. The atmospheric properties of donors are largely unknown3, but could be modified by the irradiation. To constrain models of donor atmospheres, it is necessary to obtain accurate observational estimates of their physical properties (masses, radii, temperatures and albedos). Here we report the spectroscopic detection and characterization of an irradiated substellar donor in an accreting white-dwarf binary system. Our near-infrared observations allow us to determine a model-independent mass estimate for the donor of 0.055 ± 0.008 solar masses and an average spectral type of L1 ± 1, supporting both theoretical predictions and model-dependent observational constraints that suggest that the donor is a brown dwarf. Our time-resolved data also allow us to estimate the average irradiation-induced temperature difference between the dayside and nightside of the substellar donor (57 kelvin) and the maximum difference between the hottest and coolest parts of its surface (200 kelvin). The observations are well described by a simple geometric reprocessing model with a bolometric (Bond) albedo of less than 0.54 at the 2σ confidence level, consistent with high reprocessing efficiency, but poor lateral heat redistribution in the atmosphere of the brown-dwarf donor4, 5. These results add to our knowledge of binary evolution, in that the donor has survived the transition from the stellar to the substellar regime, and of substellar atmospheres, in that we have been able to test a regime in which the irradiation and the internal energy of a brown dwarf are comparable

    The evolutionary status of Cataclysmic Variables: Eclipse modelling of 15 systems

    Get PDF
    We present measurements of the component masses in 15 Cataclysmic Variables (CVs) - 6 new estimates and 9 improved estimates. We provide new calibrations of the relationship between superhump period excess and mass ratio, and use this relation to estimate donor star masses for 225 superhumping CVs. With an increased sample of donor masses we revisit the implications for CV evolution. We confirm the high mass of white dwarfs in CVs, but find no trend in white dwarf mass with orbital period. We argue for a revision in the location of the orbital periodminimum of CVs to 79.6±0.2min, significantly shorter than previous estimates. We find that CV donors below the gap have an intrinsic scatter of only 0.005 R⊙ around a common evolutionary track, implying a correspondingly small variation in angular momentum loss (AML) rates. In contrast to prior studies, we find that standard CV evolutionary tracks - without additional AML - are a reasonable fit to the donor masses just below the period gap, but that they do not reproduce the observed period minimum, or fit the donor radii below 0.1M⊙. © 2019 The Author(s) Published by Oxford University Press on behalf of the Royal Astronomical Society
    corecore