18 research outputs found

    Study of interpad-gap of HPK 3.1 production LGADs with Transient Current Technique

    Get PDF
    The Phase-2 upgrade of the Large Hadron Collider (LHC) to High-Luminosity LHC (HL-LHC) allows an increase in the operational luminosity value by a factor of 5-7 that will result in delivering 3000 fb(-1) or more integrated luminosity. Due to high luminosity, the number of interactions per bunch crossings (pileup) will increase up to a value of 140-200. To cope with high pileup rates, a precision minimum ionising particles (MIPs) timing detector (MTD) with a time resolution of similar to 30-40 ps and hermetic coverage up to a pseudo-rapidity of vertical bar eta vertical bar = 3 is proposed by the Compact Muon Solenoid (CMS) experiment. An endcap part (1.6 <vertical bar eta vertical bar <3) of the MTD, called the endcap timing layer, will be based on low-gain avalanche detector (LGAD) technology. LGADs provide a good timing resolution due to a combination of a fast signal rise time and high signal-to-noise ratio. The performance of the ETL depends on optimising the crucial features of the sensors, namely; gain, signal homogeneity, fill factor, leakage current, uniformity of multiple-pad sensors and long term stability. The paper mainly focuses on the study of the fill factor of LGADs with varying temperature and irradiation at varying proton fluences as these sensors will be operated at low temperatures and are subjected to a high radiation environment. The 3.1 production of LGADs from Hamamatsu Photonics K.K. (HPK) includes 2x2 sensors with different structures, in particular, different values of narrower inactive region widths between the pads, called the no-gain region. In this paper, the term interpad-gap is used instead of no-gain region in order to follow the conventional terminology. These sensors have been designed to study their fill factor, which is the ratio of the area within the active region (gain region) to the total sensor area. A comparative study on the dependence of breakdown voltage with the interpad-gap width for the sensors has been carried out. Using infrared light (as the electron-hole pair creation by IR laser mimics closely to the traversing of MIPs) from the Scanning-Transient Current Technique (Scanning-TCT) set-up shows that the fill factor does not vary significantly with a variation in temperature and irradiation at high proton fluences.Peer reviewe

    Irradiated Single Crystal Chemical Vapor Deposition Diamond Characterized with Various Ionizing Particles

    Get PDF
    The radiation hardness of diamond at the sensor level is studied by irradiating five sensors and studying them with various particle sources, without making any modifications to the sensors in between. The electronics used in the characterization is not irradiated to ensure that any observed effect is merely due to the sensor. Three sensors have received a fluence of 10 (14) protons cm(-2) and two 5 center dot 10 (15) protons cm(-2). At the lower fluence, the impact on the charge collection efficiency is very small, when the applied bias voltage is above 1 V mu m(-1). For the higher fluence, the charge collection efficiency is lower than expected based on earlier studies of diamond radiation hardness on the substrate level. Furthermore, it is noticed that the irradiation has a stronger impact on the signal amplitude recorded with a fast timing than with a charge sensitive amplifier.Peer reviewe

    Characterization of Heavily Irradiated Dielectrics for Pixel Sensors Coupling Insulator Applications

    Get PDF
    An increase in the radiation levels during the high-luminosity operation of the Large Hadron Collider calls for the development of silicon-based pixel detectors that are used for particle tracking and vertex reconstruction. Unlike the conventionally used conductively coupled (DC-coupled) detectors that are prone to an increment in leakage currents due to radiation, capacitively coupled (AC-coupled) detectors are anticipated to be in operation in future collider experiments suitable for tracking purposes. The implementation of AC-coupling to micro-scale pixel sensor areas enables one to provide an enhanced isolation of radiation-induced leakage currents. The motivation of this study is the development of new generation capacitively coupled (AC-coupled) pixel sensors with coupling insulators having good dielectric strength and radiation hardness simultaneously. The AC-coupling insulator thin films were aluminum oxide (Al2O3) and hafnium oxide (HfO2) grown by the atomic layer deposition (ALD) method. A comparison study was performed based on the dielectric material used in MOS, MOSFET, and AC-coupled pixel prototypes processed on high resistivity p-type Magnetic Czochralski silicon (MCz-Si) substrates. Post-irradiation studies with 10 MeV protons up to a fluence of 10(15) protons/cm(2) suggest HfO2 to be a better candidate as it provides higher sensitivity with negative charge accumulation on irradiation. Furthermore, even though the nature of the dielectric does not affect the electric field within the AC-coupled pixel sensor, samples with HfO2 are comparatively less susceptible to undergo an early breakdown due to irradiation. Edge-transient current technique (e-TCT) measurements show a prominent double-junction effect as expected in heavily irradiated p-type detectors, in accordance with the simulation studies.Peer reviewe

    Characterization of magnetic Czochralski silicon devices with aluminium oxide field insulator : effect of oxygen precursor on electrical properties and radiation hardness

    Get PDF
    Aluminium oxide (Al2O3) has been proposed as an alternative to thermal silicon dioxide (SiO2) as field insulator and surface passivation for silicon detectors, where it could substitute p-stop/p-spray insulation implants between pixels due to its negative oxide charge, and enable capacitive coupling of segments by means of its higher dielectric constant. Al2O3 is commonly grown by atomic layer deposition (ALD), which allows the deposition of thin layers with excellent precision. In this work, we report the electrical characterization of single pad detectors (diodes) and MOS capacitors fabricated on magnetic Czochralski silicon substrates and using Al2O3 as field insulator. Devices are studied by capacitance-voltage, current-voltage, and transient current technique measurements. We evaluate the influence of the oxygen precursors in the ALD process, as well as the effect of gamma irradiation, on the properties of these devices. We observe that leakage currents in diodes before the onset of breakdown are low for all studied ALD processes. Charge collection as measured by transient current technique (TCT) is also independent of the choice of oxygen precursor. The Al2O3 films deposited with O-3 possess a higher negative oxide charge than films deposited by H2O, However, in diodes a higher oxide charge is linked to earlier breakdown, as has been predicted by simulation studies. A combination of H2O and O-3 precursors results in a good compromise between the beneficial properties provided by the respective individual precursors.Peer reviewe

    Multispectral photon-counting for medical imaging and beam characterization - A project review

    Get PDF
    Central focus of the MPMIB project – funded via the Academy of Finland’s RADDESS 2018–2021 programme – has been research towards a next-generation radiation detection system operating in a photon-counting (PC) multispectral mode: The extraction of energy spectrum per detector pixel data will lead to better efficacy in medical imaging with ionizing radiation. Therefore, it can be an important asset for diagnostic imaging and radiotherapy, enabling better diagnostic outcome with lower radiation dose as well as more versatile characterization of the radiation beam, leading for example to more accurate patient dosimetry. We present our approach of fabricating direct-conversion detectors based on cadmium telluride (CdTe) semiconductor material hybridized with PC mode capable application-specific integrated circuits (ASICs), and will give a review on our achievements, challenges and lessons learned. The CdTe crystals were processed at Micronova, Finland’s national research infrastructure for micro- and nanotechnology, employing techniques such as surface passivation via atomic layer deposition, and flip chip bonding of processed sensors to ASIC. Although CdTe has excellent photon radiation absorption properties, it is a brittle material that can include large concentrations of defects. We will therefore also emphasize our quality assessment of CdTe crystals and processed detectors, and present experimental data obtained with prototype detectors in X-ray and Co-60 beams at a standards laboratoryPeer reviewe

    Processing and interconnections of semiconductor sensors for photon and particle radiation detection

    No full text
    Defence is held on 5.11.2021 12:00 – 15:00 https://aalto.zoom.us/j/66095957049Semiconductor radiation detectors have made tremendous progress in the past few decades, increasing our understanding of physics with their detection precision. Despite these advances, there are several items that can be improved and developed. For instance, the method of sensor fabrication can be more simplified thus, the attention is given to the sensor processing this research. The detector bare module consisted of a segmented semiconductor sensor and an ASIC read-out chip (ROC). In the case of pixel detectors, the interconnection technology enables to complete a hybrid bare module. The hybrid bare module based on PSI46dig ROC read-out was used for this research with a read-out capability is 160 Mbit/s with a chip size of 7.9 × 10.3 mm2. The produced sensors were designed and fabricated in accordance with this ROC design. This thesis focuses especially on processing of sensors made of silicon and CdTe materials. Interconnection technology efforts are also emphasized as well. In particular, the research scope was to implement a more simple process introducing atomic layer deposition (ALD) thin film technology and the preparation of future higher density sensor structures. The characterization of sensors have been carried out by laboratory measurements using probe stations and transition current technique (TCT) measurements. Furthermore, functional tests of modules using different radioactive sources have been performed with a full read-out chain

    Cadmium Telluride X-ray pad detectors with different passivation dielectrics

    Get PDF
    The suitability of two low-temperature dielectric passivation layer processes for the fabrication of Cadmium Telluride (CdTe) X-ray detectors has been investigated. The CdTe crystals with a size of (10 10 1) mm were coated with sputtered aluminum nitride (AlN) or with aluminum oxide (AlO) grown by the atomic layer deposition (ALD) method. The metallization contacts of the detectors were made by titanium tungsten (TiW) and gold (Au) metal sputtering depositions. The pad detector structures were patterned with proximity-contactless photolithography techniques followed by lift-off patterning of the electrodes. The detector properties were characterized at room temperature by Transient Current Technique (TCT) measurements. The obtained results were compared and verified by numerical TCAD simulations of the detector response. Our results indicate that higher signal charge was collected from samples with AlO. Furthermore, no significant laser light induced signal decay by CdTe material polarization was observed within order of 30 min of continuous illumination.Peer reviewe

    Indium-tin bump deposition for the hybridization of CdTe sensors and readout chips

    No full text

    3D flip chip packaging of MEMS sensor

    No full text
    Advanced 3D packaging of a Micro Electro Mechanical Systems (MEMS) chip and a CMOS/ASIC Chip was studied. We successfully introduced redistribution process applying two spin coated polybenzoxazole (PBO) polymer layers and two metal layers on 200 mm ASIC wafer. Both MEMS and ASIC bump pad openings were set to 60 μm in diameter. Sputtering and electrochemical plating (ECP) techniques were utilized for metallization. On the Al pads of the sensor Au stud bumps were created. The redistributed ASIC pads were coated with sputtered Au on top of the ECP nickel metal layer and thus Au-Au flip chip bonding was accomplished. The MEMS sensor element in this study was capacitive pressure sensing diaphragm. The diaphragm was made of poly-Si. The pressure range tested was typical barometric range from 35 kPa to 115 kPa. The device operating temperature range from - 40 °C to + 85 °C was tested. Along with the packaging process, solder ball transfer jig was fabricated using bulk silicon wafer. It enabled transfer of eight solder balls to the Chip Scale Packaging (CSP) at one time. The solder ball landing pad was sputtered Au as well. The solder ball pad openings were 300 μm in diameter. Two different size of solder balls were used, 310 μm and 410 μm to ensure enough clearance between CSP and Printed Circuit Board (PCB). Solder balls were consisted of polymer core ball with SnAgCu (SAC) solder metal layers. Several thermo compression bondings were carried out and fine-tune solder ball connections. Functionality was verified by electrical device measurements. To improve productivity, replacement of the Au stud bumps was demonstrated using wafer level ECP to make SnAg μbumps. The plating quality attained within 1 μm height uniformity inside a bonding chip area. SEM observation showed that connection of SnAg micro bump to Au-pad metal was realized.</p
    corecore