92 research outputs found
Deposition and spectral performance of an inhomogeneous broadband wide-angular antireflective coating
The gradient index coatings and optical filters based on them are a challenge for fabrication. In a round-robin experiment basically the same hybrid antireflection coating for the visible spectral region has been deposited with three different techniques: electron beam evaporation, ion beam sputtering and radio frequency magnetron-sputtering. Spectral performances of such one-side and both-side coated samples have been compared with corresponding theoretical spectra of the designed profile. Also, reproducibility of each process is checked
Characterizing Coherent Wind Structures using Large-Scale Particle Tracking Velocimetry: A Proof-of-Principle Study
The following study proposes a two-dimensional large-scale particle tracking velocimetry (LS-PTV) system to characterize coherent wind structures. Seven minutes of LS-PTV data is collected via an apparatus that seeds fog-filled soap bubbles into the wind at a height of 6m from the ground. The LS-PTV data is compared to 20 minutes of data collected concurrently from a wind mast at the same site. The LS-PTV system recorded a mean streamwise velocity of 1.35m/s with a standard deviation of 0.23m/s at a mean height of 2.50m with a standard deviation of 0.7m, which agrees well with the velocity profile measured by the wind mast. Furthermore, the Reynolds stresses measured by the LS-PTV system are found to compare to those measured by the wind mast and by Klebanoff [1] for a canonical turbulent boundary layer. The current study assumes that the centre-of-curvature trajectories of the particle pathlines are representative of the trajectories followed by the spanwise vortices. As a proof-of-principle study, this work has been successful in accurately describing the vortex distribution very near to the ground. However, the trajectories followed by the centres-of- curvat.ure belonging to pathlines concurrently passing through the field-of-view were sporadic and uncorrelated
Si/SiO2-based filter coatings for astronomical applications in the IR spectral range
Order sorting filters had to be coated for the CRyogenic InfaRed Echelle Spectrograph upgrade (CRIRES+)-instrument, a high-resolution IR spectrograph to be set up at ESO's Very Large Telescope in Chile. Therefore SiO2 was chosen as material with low refractive index. Si and Ge have been investigated as materials with high refractive index, whereby Si has been chosen for the application of the coating. Three types of high-pass filters were deposited with transmission bands starting at 0.96μm, 1.47μm and 2.9μm. These filters need to block effectively all wavelengths between 0.5 μm and the respective band. Therefore, in the blocking range, an optical density above four, or above three for the filter starting at 2.9 μm respectively, had to be achieved. The filter-coatings also needed to survive thermal cycling down to 65K while only introducing a small wave front error. The lower total thickness, compared to coatings consisting of other materials, and the low film-stress are favorable properties for coatings deposited onto prisms and other more complex optical components
Thymus-Associated Parathyroid Hormone Has Two Cellular Origins with Distinct Endocrine and Immunological Functions
In mammals, parathyroid hormone (PTH) is a key regulator of extracellular calcium and inorganic phosphorus homeostasis. Although the parathyroid glands were thought to be the only source of PTH, extra-parathyroid PTH production in the thymus, which shares a common origin with parathyroids during organogenesis, has been proposed to provide an auxiliary source of PTH, resulting in a higher than expected survival rate for aparathyroid Gcm2−/− mutants. However, the developmental ontogeny and cellular identity of these “thymic” PTH–expressing cells is unknown. We found that the lethality of aparathyroid Gcm2−/− mutants was affected by genetic background without relation to serum PTH levels, suggesting a need to reconsider the physiological function of thymic PTH. We identified two sources of extra-parathyroid PTH in wild-type mice. Incomplete separation of the parathyroid and thymus organs during organogenesis resulted in misplaced, isolated parathyroid cells that were often attached to the thymus; this was the major source of thymic PTH in normal mice. Analysis of thymus and parathyroid organogenesis in human embryos showed a broadly similar result, indicating that these results may provide insight into human parathyroid development. In addition, medullary thymic epithelial cells (mTECs) express PTH in a Gcm2-independent manner that requires TEC differentiation and is consistent with expression as a self-antigen for negative selection. Genetic or surgical removal of the thymus indicated that thymus-derived PTH in Gcm2−/− mutants did not provide auxiliary endocrine function. Our data show conclusively that the thymus does not serve as an auxiliary source of either serum PTH or parathyroid function. We further show that the normal process of parathyroid organogenesis in both mice and humans leads to the generation of multiple small parathyroid clusters in addition to the main parathyroid glands, that are the likely source of physiologically relevant “thymic PTH.
Lead content and isotopic composition in submound and recent soils of the Volga upland
Literature data on the historical reconstructions of the atmospheric lead deposition in Europe and the isotopic composition of the ores that are potential sources of the anthropogenic lead in the atmospheric deposition in the lower Volga steppes during different time periods have been compiled. The effect of the increasing anthropogenic lead deposition recorded since the Bronze Age on the level of soil contamination has been investigated. For the first time paleosol buried under a burial mound of the Bronze Age has been used as a reference point to assess of the current contamination level. The contents and isotopic compositions of the mobile and total lead have been determined in submound paleosols of different ages and their recent remote and roadside analogues. An increase in the content and fraction of the mobile lead and a shift of its isotopic composition toward less radiogenic values (typical for lead from the recent anthropogenic sources) has been revealed when going from a Bronze-Age paleosol to a recent soil. In the Bronze-Age soil, the isotopic composition of the mobile lead is inherited from the parent rock to a greater extent than in the modern soils, where the lead is enriched with the less radiogenic component. The effect of the anthropogenic component is traced in the analysis of the mobile lead, but it is barely visible for the total lead. An exception is provided by the recent roadside soils characterized by increased contents and the significantly less radiogenic isotopic composition of the mobile and total lead
Genetic Variation in Jasmonic Acid- and Spider Mite-Induced Plant Volatile Emission of Cucumber Accessions and Attraction of the Predator Phytoseiulus persimilis
Cucumber plants (Cucumis sativus L.) respond to spider–mite (Tetranychus urticae) damage with the release of specific volatiles that are exploited by predatory mites, the natural enemies of the spider mites, to locate their prey. The production of volatiles also can be induced by exposing plants to the plant hormone jasmonic acid. We analyzed volatile emissions from 15 cucumber accessions upon herbivory by spider mites and upon exposure to jasmonic acid using gas chromatography—mass spectrometry. Upon induction, cucumber plants emitted over 24 different compounds, and the blend of induced volatiles consisted predominantly of terpenoids. The total amount of volatiles was higher in plants treated with jasmonic acid than in those infested with spider mites, with (E)-4,8-dimethyl-1,3,7-nonatriene, (E,E)-α-farnesene, and (E)-β-ocimene as the most abundant compounds in all accessions in both treatments. Significant variation among the accessions was found for the 24 major volatile compounds. The accessions differed strongly in total amount of volatiles emitted, and displayed very different odor profiles. Principal component analysis performed on the relative quantities of particular compounds within the blend revealed clusters of highly correlated volatiles, which is suggestive of common metabolic pathways. A number of cucumber accessions also were tested for their attractiveness to Phytoseiulus persimilis, a specialist predator of spider mites. Differences in the attraction of predatory mites by the various accessions correlated to differences in the individual chemical profiles of these accessions. The presence of genetic variation in induced plant volatile emission in cucumber shows that it is possible to breed for cucumber varieties that are more attractive to predatory mites and other biological control agents
Optical and structural properties of LaF3 thin films
LaF3 thin films of different thicknesses were deposited on CaF2 (111) and silicon substrates by boat evaporation at a relatively low substrate temperature of 150°C. Optical and mechanical properties have been investigated and are discussed
- …