3,480 research outputs found
Coupling centennial-scale shoreline change to sea-level rise and coastal morphology in the Gulf of Mexico using a Bayesian network
© The Author(s), 2016. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth's Future 4 (2016): 143â158, doi:10.1002/2015EF000331.Predictions of coastal evolution driven by episodic and persistent processes associated with storms and relative sea-level rise (SLR) are required to test our understanding, evaluate our predictive capability, and to provide guidance for coastal management decisions. Previous work demonstrated that the spatial variability of long-term shoreline change can be predicted using observed SLR rates, tide range, wave height, coastal slope, and a characterization of the geomorphic setting. The shoreline is not sufficient to indicate which processes are important in causing shoreline change, such as overwash that depends on coastal dune elevations. Predicting dune height is intrinsically important to assess future storm vulnerability. Here, we enhance shoreline-change predictions by including dune height as a variable in a statistical modeling approach. Dune height can also be used as an input variable, but it does not improve the shoreline-change prediction skill. Dune-height input does help to reduce prediction uncertainty. That is, by including dune height, the prediction is more precise but not more accurate. Comparing hindcast evaluations, better predictive skill was found when predicting dune height (0.8) compared with shoreline change (0.6). The skill depends on the level of detail of the model and we identify an optimized model that has high skill and minimal overfitting. The predictive model can be implemented with a range of forecast scenarios, and we illustrate the impacts of a higher future sea-level. This scenario shows that the shoreline change becomes increasingly erosional and more uncertain. Predicted dune heights are lower and the dune height uncertainty decreases.This work was supported by the USGS
Coastal and Marine Geology Program
and the USGS Southeast Regional
Assessment Project
Calcium intake from different food sources in Italian women without and with non-previously diagnosed osteoporosis
An adequate calcium and vitamin D intake may play a role in preventing osteoporosis, but the contribution of the different food sources of calcium with regards to the risk of osteoporosis been barely explored. This observational study evaluated the calcium intake through a food frequency questionnaire in 126 adult women with not previously diagnosed osteoporosis undergoing Dual-energy X-ray Absorptiometry (DXA) to screen for osteoporosis, and to correlate the calcium intake with parameters of bone density, measured by DXA. Total daily calcium intake and daily intake from food were similar among women found to have osteoporosis, osteopenia or normal condition. The main food source was milk and dairy products, while calcium supplementation was consumed by only 14% of subjects, irrespectively from osteoporosis conditions. DXA parameters were not significantly correlated with total daily calcium intake and calcium from food. The present study highlighted no qualitative and quantitative differences in the consumption of food groups contributing to calcium intakes in women with and without osteoporosis
Scanning Probe Microscopy for polymer film characterization in food packaging
Scanning probe microscopy (SPM) is a branch of microscopy allowing
characterization of surfaces at the micro-scale by means of a physical probe (with a size of a few
microns) raster scanning the sample. SPMs monitor the interaction between such probe and the
surface and, depending on the specific physical principles causing the interaction, they allow
generation of a quantitative map of topographic properties: geometrical, optical, electrical,
magnetic, etc. This is of the greatest interest, in particular whenever functional surfaces have to
be characterized in a quantitative manner. The present paper discusses the different applications
of Scanning Probe Microscopy techniques for a thorough characterization of polymer surfaces,
of specific interest in particular for the case of food packaging applications
A prototype of fine granularity lead-scintillating fiber calorimeter with imaging read out
The construction and tests performed on a smal prototype of lead-scintillating fiber calorimeter instrumented with multianode photomultipliers are reported. The prototype is 15 cm wide, 15 radiation lenghts deep and is made of 200 layers of 50 cm long fibers. One side of the calorimeter has been instrumented with an array of 3 Ă 5 multianode R8900-M16 Hamamatsu photomultipliers, each segmented with a matrix of 4 Ă 4 anodes. The read-out granularity is 240 pixels 11 Ă 11 mm 2 reading about 64 fibers each. They are interfaced to the 6 Ă 6 mm 2 pixelled photocade with truncated pyramid light guides made of BC-800 plastic, UV transparent. Moreover each photomultiplier provides also the OR information of the last 12 dynodes. This information can be useful for trigger purposes. The response of the individual anodes, their relative gain and cross-talk has been measured with a 404 nm picosecond laser illuminating only a few fibers on the opposite side of the read-out. We also present first results of the calorimeter response to cosmic rays and electron beam data collected at BTF facility in Frascati
Combined Bulk and Surface Radiation Damage Effects at Very High Fluences in Silicon Detectors: Measurements and TCAD Simulations
In this work we propose a new combined TCAD radiation damage modelling
scheme, featuring both bulk and surface radiation damage effects, for the
analysis of silicon detectors aimed at the High Luminosity LHC. In particular,
a surface damage model has been developed by introducing the relevant
parameters (NOX, NIT) extracted from experimental measurements carried out on
p-type substrate test structures after gamma irradiations at doses in the range
10-500 Mrad(Si). An extended bulk model, by considering impact ionization and
deep-level cross-sections variation, was included as well. The model has been
validated through the comparison of the simulation findings with experimental
measurements carried out at very high fluences (2 10^16 1 MeV equivalent
n/cm^2) thus fostering the application of this TCAD approach for the design and
optimization of the new generation of silicon detectors to be used in future
HEP experiments.Comment: 8 pages, 14 figures. arXiv admin note: text overlap with
arXiv:1611.1013
Vitamin A, cancer treatment and prevention: The new role of cellular retinol binding proteins
Retinol and vitamin A derivatives influence cell differentiation, proliferation, and apoptosis and play an important physiologic role in a wide range of biological processes. Retinol is obtained from foods of animal origin. Retinol derivatives are fundamental for vision, while retinoic acid is essential for skin and bone growth. Intracellular retinoid bioavailability is regulated by the presence of specific cytoplasmic retinol and retinoic acid binding proteins (CRBPs and CRABPs). CRBP-1, the most diffuse CRBP isoform, is a small 15âKDa cytosolic protein widely expressed and evolutionarily conserved in many tissues. CRBP-1 acts as chaperone and regulates the uptake, subsequent esterification, and bioavailability of retinol. CRBP-1 plays a major role in wound healing and arterial tissue remodelling processes. In the last years, the role of CRBP-1-related retinoid signalling during cancer progression became object of several studies. CRBP-1 downregulation associates with a more malignant phenotype in breast, ovarian, and nasopharyngeal cancers. Reexpression of CRBP-1 increased retinol sensitivity and reduced viability of ovarian cancer cells in vitro. Further studies are needed to explore new therapeutic strategies aimed at restoring CRBP-1-mediated intracellular retinol trafficking and the meaning of CRBP-1 expression in cancer patients' screening for a more personalized and efficacy retinoid therapy
Testosterone Enanthate: An In Vitro Study of the Effects Triggered in MG-63 Cells
The aim of this study was to investigate the effects of the androgenic hormone testosterone enanthate (TE) on human MG-63 cells. MG-63 were cultured for 24 h in the presence of TE at increasing concentrations to assess its lethal dose. Therefore, the suitable concentration for a prolonged use of TE in vitro was assessed by viability assay over 9 days. Finally, MG-63 were exposed to TE for 14 days and assayed for differentiation by qPCR and Alizarin Red S staining. TE in the amount of 100 ”M resulted as the maximum dose tolerated by MG-63 cells after 24 h. However, a prolonged exposure in culture TE in the amount of 100 ”M showed a cytostatic effect on cell proliferation. On the contrary, TE 10 ”M was tolerated by the cells and did not boost cell proliferation, but did enhance new bone formation, as revealed by COL1A1, ALPL, BGLAP, and IBSP gene expression after 3, 7, and 14 days, and calcium deposition by Alizarin Red S staining after 14 days. Based on the current study, 10 ”M is the critical dose of TE that should be used in vitro to support bone differentiation of MG-63 cells
An engineered anti-idiotypic antibody-derived killer peptide (KP) early activates swine inflammatory monocytes, CD3+CD16+ natural killer T cells and CD4+CD8α+ double positive CD8ÎČ+ cytotoxic T lymphocytes associated with TNF-α and IFN-Îł secretion
This study evaluated the early modulation of the phenotype and cytokine secretion in swine immune cells treated with an engineered killer peptide (KP) based on an anti-idiotypic antibody functionally mimicking a yeast killer toxin. The influence of KP on specific immunity was investigated using porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) as ex vivo antigens. Peripheral blood mononuclear cells (PBMC) from healthy pigs were stimulated with KP and with a scramble peptide for 20 min, 1, 4 and 20 h or kept unstimulated. The cells were analyzed using flow cytometry and ELISA. The same time-periods were used for KP pre-incubation/co-incubation to determine the effect on virus-recalled interferon-gamma (IFN-Îł) secreting cell (SC) frequencies and single cell IFN-Îł productivity using ELISPOT. KP induced an early dose-dependent shift to pro-inflammatory CD172α+CD14+high monocytes and an increase of CD3+CD16+ natural killer (NK) T cells. KP triggered CD8α and CD8ÎČ expression on classical CD4âCD8αÎČ+ cytotoxic T lymphocytes (CTL) and double positive (DP) CD4+CD8α+ Th memory cells (CD4+CD8α+low CD8ÎČ+low). A fraction of DP cells also expressed high levels of CD8α. The two identified DP CD4+CD8α+high CD8ÎČ+low/+high CTL subsets were associated with tumor necrosis factor alpha (TNF-α) and IFN-Îł secretion. KP markedly boosted the reactivity and cross-reactivity of PRRSV type-1- and PCV2b-specific IFN-Îł SC. The results indicate the efficacy of KP in stimulating Th1-biased immunomodulation and support studies of KP as an immunomodulator or vaccine adjuvant
Detonation nanodiamonds tailor the structural oeder of PEDOT chains in conductive coating layers of hybrid nanoparticles
Solid layers of PEDOTâdetonation nanodiamond based nanoparticles with an exceptional structural order
were produced by means of a template-free polymerization technique. As an efficient multifunctional filler,
the nanocrystalline diamond has been shown to possess a high catalytic activity on the monomer
polymerization rate as well as to play a fundamental role as a 3D arrangement-directing agent of the
PEDOT chains at the micro- and nano-scale. SEM, TEM and TED analyses highlighted the mutual
organization between PEDOT oligomers and nanodiamond grains, and the produced hierarchical effects
on the arrangement of the backbones of the final polymer. Optical and Raman spectroscopy, used
together with XRD diffraction to study the molecular structure and crystallographic features of the hybrid
materials, pointed out that the adopted synthetic strategy enables highly conjugated and doped hybrid
systems to be generated. The spatial distribution of the filler inside the polymeric matrix and the mutual
connectivity of nanodiamond crystals and PEDOT segments are found to strongly improve the functional
properties of the host polymer. Mechanical characterizations by advanced AFM-based techniques
revealed that both indentation modulus and hardness of PEDOT/nanodiamond materials are 3 times
higher than the pure PEDOT polymer, while electrical characterizations by a 4-probe method gave sheet
resistance values of 1 106 U sq 1 for the nanocomposite particle
Measurement of neutron detection efficiency between 22 and 174 MeV using two different kinds of Pb-scintillating fiber sampling calorimeters
We exposed a prototype of the lead-scintillating fiber KLOE calorimeter to
neutron beam of 21, 46 and 174 MeV at The Svedberg Laboratory, Uppsala, to
study its neutron detection efficiency. This has been found larger than what
expected considering the scintillator thickness of the prototype. %To check our
method, we measured also the neutron %detection efficiency of a 5 cm thick
NE110 scintillator. We show preliminary measurement carried out with a
different prototype with a larger lead/fiber ratio, which proves the relevance
of passive material to neutron detection efficiency in this kind of
calorimeters
- âŠ