25 research outputs found

    Impact of Capital Budgeting Decision on Profitability of Firm – Selected Listed Automobile Companies in India

    Get PDF
    Purpose: Profitability plays an important function in the business operations and determines the value by which a business is held. The study set to investigate the impact of capital budgeting decisions on profitability of Automobile firms. Capital budgeting particularly addressed five areas of the study that included capital budgeting decisions (acquisition of long-term assets, replacement of long-term assets, investment appraisal techniques, outsourcing expenditure and working capital decisions) had a biggest and significant effect on profitability of the organizations.   Methodology: This study basically involved survey of the Automobile Companies listed in NSE in India. Any business that seeks to invest its resources in a project without understanding the risks and returns involved would be held as irresponsible by its owners or shareholders. This study considered 10 companies are taken from Automobile sectors, which is listed in NSE. Correlation and paired T test were used.   Findings: This study basically involved survey of the Automobile Companies listed in NSE in India.The findings set up that there was relationship between the independent variables of capital budgeting decisions and profitability. The study was examined the outcome of capital budgeting Impact on profitability of listed firms in India. The independent variables for the study were Capital Budgeting and Profitability.   Research implications:  it is evident that Maruti and Tata Motors produced positive and statistically significant values for this study (high t-values (12.37 and 11.26), p =0.00) respectively. Eicher Motor resulted a Lowest but insignificant values (t= 2.11, p = 0.07).   Originality/Outcome: The study found that positive impact of capital budgeting on profitability of the firms under the study

    Second-generation nitazoxanide derivatives: thiazolides are effective inhibitors of the influenza A virus

    Get PDF
    Aim: The only small molecule drugs currently available for treatment of influenza A virus (IAV) are M2 ion channel blockers and sialidase inhibitors. The prototype thiazolide, nitazoxanide, has successfully completed Phase III clinical trials against acute uncomplicated influenza. Results: We report the activity of seventeen thiazolide analogs against A/PuertoRico/8/1934(H1N1), a laboratory-adapted strain of the H1N1 subtype of IAV, in a cell culture-based assay. A total of eight analogs showed IC50s in the range of 0.14–5.0 μM. Additionally a quantitative structure–property relationship study showed high correlation between experimental and predicted activity based on a molecular descriptor set. Conclusion: A range of thiazolides show useful activity against an H1N1 strain of IAV. Further evaluation of these molecules as potential new small molecule therapies is justified

    Magnetohydrodynamic free convection flow past an oscillating plate embedded in a porous medium

    Get PDF
    The objective of this paper is to study the radiation and thermal diffusion/Soret effects on a magnetohydrodynamic (MHD) free convection flow of an incompressible viscous fluid near an oscillating plate embedded in a porous medium. The governing coupled linear partial differential equations are solved analytically using Laplace transform method. The results for velocity, temperature and concentration fields are obtained. The deduced results for skin friction, Nusselt number and Sherwood number are computed numerically in tabular forms. Graphs are plotted to see the effects of various embedded flow parameters. A detailed discussion of these flow parameters along with their physical interpretation is also presented and appropriate conclusion are drawn

    miR-18a Mediates Immune Evasion in ER-Positive Breast Cancer through Wnt Signaling

    No full text
    ER-positive (ER+) breast cancer is considered immunologically ‘silent’ with fewer tumor-infiltrating immune cells. We have previously demonstrated the role of miR-18a in mediating invasion and poor prognosis in ER+ breast cancer by activation of the Wnt signaling pathway. Here, we explored the immune-modulatory functions of high levels of miR-18a in these tumors. A microarray-based gene expression analysis performed in miR-18a over-expressed ER+ breast cancer cell lines demonstrated dysregulation and suppression of immune-related pathways. Stratification of the ER+ tumor samples by miR-18a levels in the TCGA and METABRIC cohort and immune cell identification performed using CIBERSORT and Immune CellAI algorithms revealed a higher proportion of T-regulatory cells (p < 0.001) and a higher CD4/CD8 ratio (p < 0.01). miR-18a over-expressed MCF7 co-cultured with THP-1 showed decreased antigen presentation abilities and increased invasiveness and survival. They also promoted the differentiation of pro-tumorigenic M2 macrophages. Inhibition of the Wnt pathway in miR-18a over-expressed cells brought about the restoration of TAP-1, a protein critical for antigen presentation. Examination of tumor specimens from our case series showed that miR-18a high ER+ tumors had a dense lymphocyte infiltrate when compared to miR-18a low tumors but expressed a higher CD4/CD8 ratio and the M2 macrophage marker CD206, along with the invasive marker MMP9. We report for the first time an association between miR-18a-mediated Wnt signaling and stromal immune modulation in ER+ tumors. Our results highlight the possibility of formulating specific Wnt pathway inhibitors that may be used in combination with immune checkpoint blockers (ICB) for sensitizing ‘immune-cold’ ER+ tumors to immunotherapy

    Targeting the Ubiquinol-Reduction (Qi) Site of the Mitochondrial Cytochrome bc1 Complex for the Development of Next Generation Quinolone Antimalarials

    Get PDF
    Antimalarials targeting the ubiquinol-oxidation (Qo) site of the Plasmodium falciparum bc1 complex, such as atovaquone, have become less effective due to the rapid emergence of resistance linked to point mutations in the Qo site. Recent findings showed a series of 2-aryl quinolones mediate inhibitions of this complex by binding to the ubiquinone-reduction (Qi) site, which offers a potential advantage in circumventing drug resistance. Since it is essential to understand how 2-aryl quinolone lead compounds bind within the Qi site, here we describe the co-crystallization and structure elucidation of the bovine cytochrome bc1 complex with three different antimalarial 4(1H)-quinolone sub-types, including two 2-aryl quinolone derivatives and a 3-aryl quinolone analogue for comparison. Currently, no structural information is available for Plasmodial cytochrome bc1. Our crystallographic studies have enabled comparison of an in-silico homology docking model of P. falciparum with the mammalian’s equivalent, enabling an examination of how binding compares for the 2- versus 3-aryl analogues. Based on crystallographic and computational modeling, key differences in human and P. falciparum Qi sites have been mapped that provide new insights that can be exploited for the development of next-generation antimalarials with greater selective inhibitory activity against the parasite bc1 with improved antimalarial properties

    Estimation of ALU Repetitive Elements in Plasma as a Cost-Effective Liquid Biopsy Tool for Disease Prognosis in Breast Cancer

    No full text
    Background: Liquid biopsy is widely recognized as an efficient diagnostic method in oncology for disease detection and monitoring. Though the examination of circulating tumor cells (CTC) is mostly implemented for the assessment of genomic aberrations, the need of complex methodologies for their detection has impeded its acceptance in low-resource settings. We evaluated cell-free DNA (cfDNA) as a liquid biopsy tool and investigated its utility in breast cancer patients. Methods: Total cell-free DNA was extracted from the plasma of breast cancer patients (n = 167) with a median follow-up of more than 5 years, at various stages of the disease. Quantitative PCR was performed to estimate the copy numbers of two fractions of ALU repetitive elements (ALU 115 and ALU 247), and DNA integrity (DI) was calculated as the ratio of ALU 247/115. Mutations in TP53 and PIK3CA in the cfDNA were estimated by next-gen sequencing (NGS) in a subset of samples. Associations of the levels of both the ALU fragments with various clinico-pathological factors and disease-free survival at various stages were examined. Nomogram models were constructed with clinical variables and ALU 247 levels to predict disease-free survival and the best performing model was evaluated by decision curve analysis. Results: DI and ALU 247 levels were significantly lower (p p p = 0.005). Higher levels of ALU 247 in the circulation also correlated with low tumor-infiltrating lymphocytes (TIL) within their primary tumors in the ER-negative breast cancer subtype (p = 0.01). Cox proportional hazard analysis confirmed ALU 247 as an independent variable of disease-free survival both in univariate and multivariate analysis [HR 1.3 (95% CI 1.047 to 1.613, p = 0.017)]. The nomogram model showed that the addition of ALU 247 with other variables significantly improved (C-index 0.823) the predictive ability of the model. Conclusion: Our results confirm the utility of cfDNA as an evolving liquid biopsy tool for molecular analysis. Evaluation of larger fragments of cfDNA estimated through ALU 247 can provide vital information concurrent with the pathological process of disease evolution in breast cancer and warrants expansion to other cancer types
    corecore