11 research outputs found

    MemCA: all-memristor design for deterministic and probabilistic cellular automata hardware realization

    Get PDF
    © 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksInspired by the behavior of natural systems, Cellular Automata (CA) tackle the demanding long-distance information transfer of conventional computers by the massive parallel computation performed by a set of locally-coupled dynamical nodes. Although CA are envisioned as powerful deterministic computers, their intrinsic capabilities are expanded after the memristor’s probabilistic switching is introduced into CA cells, resulting in new hybrid deterministic and probabilistic memristor-based CA (MemCA). In the proposed MemCA hardware realization, memristor devices are incorporated in both the cell and rule modules, composing the very first all-memristor CA hardware, designed with mixed CMOS/Memristor circuits. The proposed implementation accomplishes high operating speed and reduced area requirements, exploiting also memristor as an entropy source in every CA cell. MemCA’s functioning is showcased in deterministic and probabilistic operation, which can be externally modified by the selection of programming voltage amplitude, without changing the design. Also, the proposed MemCA system includes a reconfigurable rule module implementation that allows for spatial and temporal rule inhomogeneity.Peer ReviewedPostprint (published version

    Memristive Learning Cellular Automata: Theory and Applications

    Full text link
    Memristors are novel non volatile devices that manage to combine storing and processing capabilities in the same physical place.Their nanoscale dimensions and low power consumption enable the further design of various nanoelectronic processing circuits and corresponding computing architectures, like neuromorhpic, in memory, unconventional, etc.One of the possible ways to exploit the memristor's advantages is by combining them with Cellular Automata (CA).CA constitute a well known non von Neumann computing architecture that is based on the local interconnection of simple identical cells forming N-dimensional grids.These local interconnections allow the emergence of global and complex phenomena.In this paper, we propose a hybridization of the CA original definition coupled with memristor based implementation, and, more specifically, we focus on Memristive Learning Cellular Automata (MLCA), which have the ability of learning using also simple identical interconnected cells and taking advantage of the memristor devices inherent variability.The proposed MLCA circuit level implementation is applied on optimal detection of edges in image processing through a series of SPICE simulations, proving its robustness and efficacy

    Chemical Wave Computing from Labware to Electrical Systems

    Get PDF
    Unconventional and, specifically, wave computing has been repeatedly studied in laboratory based experiments by utilizing chemical systems like a thin film of Belousov–Zhabotinsky (BZ) reactions. Nonetheless, the principles demonstrated by this chemical computer were mimicked by mathematical models to enhance the understanding of these systems and enable a more detailedinvestigation of their capacity. As expected, the computerized counterparts of the laboratory based experiments are faster and less expensive. A further step of acceleration in wave-based computingis the development of electrical circuits that imitate the dynamics of chemical computers. A key component of the electrical circuits is the memristor which facilitates the non-linear behavior of the chemical systems. As part of this concept, the road-map of the inspiration from wave-based computing on chemical media towards the implementation of equivalent systems on oscillating memristive circuits was studied here. For illustration reasons, the most straightforward example was demonstrated, namely the approximation of Boolean gates

    Material design strategies for emulating neuromorphic functionalities with resistive switching memories

    No full text
    Nowadays, the huge power consumption and the inability of the conventional circuits to deal with real-time classification tasks have necessitated the devising of new electronic devices with inherent neuromorphic functionalities. Resistive switching memories arise as an ideal candidate due to their low footprint and small leakage current dissipation, while their intrinsic randomness is smoothly leveraged for implementing neuromorphic functionalities. In this review, valence change memories or conductive bridge memories for emulating neuromorphic characteristics are demonstrated. Moreover, the impact of the device structure and the incorporation of Pt nanoparticles is thoroughly investigated. Interestingly, our devices possess the ability to emulate various artificial synaptic functionalities, including paired-pulsed facilitation and paired-pulse depression, long-term plasticity and four different types of spike-dependent plasticity. Our approach provides valuable insights from a material design point of view towards the development of multifunctional synaptic elements that operate with low power consumption and exhibit biological-like behavior

    Wave cellular automata for computing applications

    No full text
    There is a continuous urge for higher efficiency in conventional computing systems, driven by an ever-growing demand for these systems’ complexity to be able to match the one of convoluted and challenging problems. However, this type of problems has formulated the benchmarks for unconventional computing systems to validate their emerging applicability and prove their effectiveness. Towards this path, Cellular Automata (CAs) have been established as a promising mathematical tool for simulating physical processes and demonstrated a favourable methodology for effectively implementing computations in hardware by taking advantage of their inherent parallelism. Representing CAs with oscillating memristive networks could further enhance the performance of these systems, by incorporating the rich dynamics evident in memristors and their strong memory and computing features. In this work, a wave generator circuit has been designed with low-voltage fabricated CBRAM devices, that is able to act as a Wave Cellular Automaton (WCA). These wave generation units are located on a grid with adjusting multi-directional interconnections between neighbors. In addition to that, the ability to reconFigure the amount of such units that influence each other, facilitates the propagation of voltage signals through the grid following wave propagation features. An example of this computational domain is presented with the realization of complex logic gates on the grid of WCAs.Peer ReviewedPostprint (published version

    Unconventional memristive nanodevices

    No full text
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.One of the most enticing candidates for next-generation computing systems is the memristor. Memristor-based novel architectures have demonstrated considerable promise in replacing or augmenting traditional computing platforms based on the Von Neumann architecture, which faces many issues in the big-data era, as well as in newly developed neuromorphic tasks. Although the current classical computing architecture is unlikely to be abandoned in the foreseeable future, the growing trend of neuromorphic, quantum, and bio-inspired computing schemes calls for more specialized beyond Von Neumann platforms. Memristors showcase multiple advantages in terms of small area footprint, energy efficiency, high endurance, bio-compatibility, and their inherent synaptic and neuromorphic behavior. The topic of this work is to present the memristive devices that meet the requirements for the implementation of the novel beyond Von Neumann applications and examine their switching mechanism and material selection, as well as to conduct a performance comparison between the fabricated devices paving the way for future computing applications.Postprint (author's final draft

    Unconventional computing with memristive nanocircuits

    No full text
    Computing demands are growing rapidly as bigdata and artificial intelligence applications become increasingly tasking. Bio-inspired and quantum-based techniques are proving to be quite promising for the development of novel circuits and systems. These systems can contribute to the resolution of a wider variety of problems while also providing improvements to existing techniques. As the von Neumann architecture’s expected performance, which has been dominant for the past several decades, is now hindered by physical limitations, novel computing architectures, assisted by novel materials and circuit devices, are starting to emerge and provide promising results. The topic of this work is to examine the memory and computing capabilities of emergent memristor-based nanocircuits and demonstrate their advantages compared to their classical counterparts.Postprint (author's final draft
    corecore