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ABSTRACT Inspired by the behavior of natural systems, Cellular Automata (CA) tackle the demanding
long-distance information transfer of conventional computers by themassive parallel computation performed
by a set of locally-coupled dynamical nodes. Although CA are envisioned as powerful deterministic
computers, their intrinsic capabilities are expanded after thememristor’s probabilistic switching is introduced
into CA cells, resulting in new hybrid deterministic and probabilistic memristor-based CA (MemCA). In the
proposed MemCA hardware realization, memristor devices are incorporated in both the cell and rule mod-
ules, composing the very first all-memristor CA hardware, designed with mixed CMOS/Memristor circuits.
The proposed implementation accomplishes high operating speed and reduced area requirements, exploiting
also memristor as an entropy source in every CA cell. MemCA’s functioning is showcased in deterministic
and probabilistic operation, which can be externally modified by the selection of programming voltage
amplitude, without changing the design. Also, the proposed MemCA system includes a reconfigurable rule
module implementation that allows for spatial and temporal rule inhomogeneity.

INDEX TERMS Memristor technology, cellular automata, emergent computing hardware, hybrid
CMOS/memristor design.

I. INTRODUCTION
Traditional general-purpose processor-centric computing
systems, i.e. von Neumann computers, cannot meet the mod-
ern demands for energy- and area-efficient implementation of
computationally heavy tasks in compact autonomous devices,
known as Edge Computing nodes. Mainly due to the high
demands for information transfer between processor and
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memory, computation-intensive operations, e.g. demanding
Artificial Intelligence (AI) tasks, do not fit well into energy-
and area-constrained embedded hardware. Therefore, uncon-
ventional computing architectures should be investigated in
order to achieve efficient AI computing on the Edge.
One of the most well-known unconventional computing

architectures is Cellular Automata (CA) [1], which is a com-
puting paradigm that is based on the interaction of simple
building elements, namely CA cells. Such a decentralized
computing system, which is a prime example of Emergent
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Computing [1], [2], is capable of performing complex com-
putational tasks owing to cells’ collective behavior. Since
processing is conducted locally in each CA cell, this com-
puting paradigm lacks a focal computing module, such as
the foreseen Central Processing Unit (CPU) in von Neu-
mann computers. Furthermore, information storage is spread
throughout the CA cells, forming an inherent co-locality of
storage and processing, addressing the massive burden of
information transmission required in classical computers.

The research on CA dates back to the 1940s, when von
Neumann worked on the notion of self-reproducing automata
and, together with Stanislaw Ulam, who was researching lat-
tice networks, created an early model of today’s CA [3]. Von
Neumann’s inspiration was drawn from nature, as he sought
to demystify the computing capability of biological systems,
like the human brain, by comparing their complexity to that
of then-modern computers. Conway et al. [4] demonstrated
the creation of patterns and self-organization inside a two-
dimensional array of binary CA cells, garnering widespread
recognition for CA. Stephen Wolfram subsequently created
the contemporary mathematical foundation of CA based on
his careful analysis of CA’s complexity [5]. Coming from
the realm of nonlinear systems, Leon Chua conducted an
in-depth analysis of Wolfram’s CA, concentrating on the
particular situation of Elementary CA (ECA). In his work [6],
Chua quantified the complexity of the ECA by establishing
the index of complexity, created analytical formulations of
the CA cells’ interaction rules, and investigated symmetries
between the various ECA rules. In addition, Chua introduced
the idea of Cellular Nonlinear (or Neural) Networks (CNNs),
an extended form of CA that functions in continuous time [7].

In the previous two decades, a wide range of CA-based
applications have been explored and implemented, either in
software or hardware. CA are appealing for the modeling
of complex natural, biological, physical, or chemical sys-
tems because of their simple formulation since they can
readily imitate the local interactions of such systems while
effectively demonstrating global phenomena. CA modeling
of chemical processes [8], for example, has been found to
improve the understanding of chemical systems such as the
Belousov-Zhabotinsky reaction [9], [10], [11], [12]. Further-
more, their applications in biological system modeling range
from excitable and oscillating mediums that mimic brain
events like nerve cell excitation to DNA sequencing [13],
[14]. CA’s potential for simulating biological systems such
as plant succession and wildfire spread has also been exam-
ined [15], [16]. CA-based models, on the other hand, have
been used in the modeling of semiconductors by realiz-
ing predictive models of their production processes [17].
Moreover, the dynamics of social systems during emer-
gency situations, like urgent evacuation or pandemics spread-
ing, have been successfully captured by CA models [18],
[19]. Non-deterministic variants of CA have also been used
to model complex problems such as stock market dynam-
ics, virus spreading, swarm dynamics, neuropercolation,

and self-organization in complex systems [20], [21], [22],
[23], [24].

In terms of purely computational tasks, the local processing
of spatial information in a parallel manner enhances CA’s
suitability for image processing tasks such as noise filtering,
edge detection, and image sharpening, to name a few [25],
[26], [27]. Furthermore, the temporal evolution of CA has
been used in the creation of cryptosystems based on either
simple or complex CA cells capable of generating strongly
encrypted sequences [28], [29], [30].

Nonetheless, the implementation of CA in traditional com-
puters is inefficient owing to the CPU’s serial execution
of operations, which restricts the execution speed of CA
applications since the cells’ activities are completed sequen-
tially. However, the simplicity of the CA system’s formu-
lation has piqued the interest of hardware developers, who
can simply convert CA to digital circuit designs and imple-
ment them with powerful Field-Programmable Gate Arrays
(FPGAs), which are ideal for the hardware realization of
CA’s parallelism and module-based structure [31]. As a
result, a great variety of CA adaptations have been shown
on FPGAs in order to accomplish ultra-fast CA applications.
FPGA-based CA has been utilized to improve the efficiency
of software-based equivalents in real-time crowd evacua-
tion [32], traffic management [33], wildfire spreading mod-
eling [34], backtracking of DNA sequence evolution [35],
modeling of microbes [36], and chemical processes [10],
while, recently, CA’s dynamical behavior has been exploited
in Reservoir Computing applications for energy-efficient pat-
tern recognition [37]. Although FPGAs have clearly domi-
nated the field of CA hardware implementations, this sec-
tor lacks almost any alternative hardware system, such as
application-specific integrated circuits (ASICs). The high
prototyping cost and lack of adaptability of ASIC-based CA
implementations seem to be prohibitive to their widespread
use, whereas a generic CA ASIC design remains undiscov-
ered [38]. Despite this, the efficient design of ASIC-based
CA may yield faster and more compact solutions in terms of
hardware area. It should be highlighted that the digital nature
of FPGAs precludes the creation of non-deterministic CA
variants, which call for vast pseudo-randomness generation,
making it almost impossible for digital systems.

From a technological standpoint, the driving power of
classical computer growth is the feasibility of transistor tech-
nology getting minimized, which enabled the skyrocketing
of conventional complementary metal-oxide-semiconductor
(CMOS) technology. However, reaching the physical limits
of transistor miniaturization saturates the potential of con-
ventional technology to further improve its energy and area
requirements, which opens space for other novel semiconduc-
tor technologies to be explored. Among these lines, memris-
tor technology gains ground over purely CMOS approaches
as it enables ultra-dense non-volatile information storage near
the processing unit, as well as the low-power implementation
of artificial neural network (ANN) accelerators in hardware.
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Since purely memristor-based circuits lack the necessary
cascadability to achieve the realization of very-large-scale
integration (VLSI) systems, hybrid CMOS/memristor tech-
nology is becoming more attractive as it exploits memris-
tor’s low-power, high-density, and non-volatility, along with
CMOS technology’s high speed and design scalability.

Considering dedicated hardware for CA applications, Itoh
and Chua recommended using a memristor in a basic circuit
to achieve the functioning of a CA cell and then building
an array of such cells to make a CA grid [39]. In this tech-
nique, they used the intrinsic dynamics of idealized memris-
tor devices to accomplish various logic operations that imple-
ment the essential cell interaction to solve computing tasks,
demonstrating a wide range of image processing applications.
Although this pioneering work provided the inspiration for
numerous memristor-based CA systems, this technique is
practically infeasible owing to the arbitrary selection of the
memristor’s nonlinear dynamics for each application, which
does not correspond to the behavior of actual memristor
devices. They did, however, describe certain characteristics
for memristor-based CA, such as the correct separation of
time-steps into read and write phases, which were used by
subsequent memristor-based CA systems [40].

Thus, after the publication of Itoh and Chua’s land-
mark article, other memristor-based CA methodologies for
the execution of computing tasks, such as shortest route
finding methods and sorting systems [41], have been pre-
sented. In addition, memristor-based CA has been suggested
for image processing in medical applications [42], pseudo-
randomness generation [43], the simulation of the propaga-
tion of epileptic brain activity [44], and the development of
patterns via simulating the Game of Life [45]. Moreover,
a unique strategy for edge detection using memristor-based
CA has been developed by including the adaptation of CA’s
neighborhood [46]. Aside from their early uses, memristor-
based CA lack a general architecture that would allow a broad
range of individuals to utilize this computational tool. In addi-
tion, the integration of memristors in CA implementations
conceals an unusual feature that permits the hardware-level
realization of nondeterministic CA [47].

In the context of this work, the realization of efficient
CA hardware for both deterministic and probabilistic tasks is
investigated with the utilization of hybrid CMOS/Memristor
circuits. As a computational tool, CA can be exploited in logi-
cal computations, since they have proven their computational
capabilities as Turing machines [48], but also in the genera-
tion of probabilistic sequences, useful as generators of truly
random numbers as well as necessary for stochastic comput-
ing systems. The transistor-level design of an all-memristor
CA implementation is proposed, utilizing memristors in both
state and rule implementation, an approach that is proven
to be efficient for non-CA systems like memristor-based
deep neural networks [49]. A memristor in each cell holds
the cell state and allows its probabilistic transition, while a
memristive crossbar array implements the CA rule for the

cell. This approach allows for reprogramming the system
to any ECA rule and enables the implementation of CA
algorithms where versatile selection and alternation of the
rule are necessary. In addition, the proposed design provides
control of the transition probability by simply tuning the
amplitude of the memristor programming voltage, which is
a globally controlled signal and may be adjusted throughout
the operation of the system.

The rest of the paper is structured as follows: In Section II,
the necessary mathematical background on Elementary CA,
Probabilistic CA and Memristor-based CA is provided. The
novel hybrid CMOS/Memristor design of the all-memristor
CA is detailed in Section III, while Section IV demonstrates
MemCA’s operation for both deterministic and probabilistic
tasks. Finally, Section V concludes the paper.

II. BACKGROUND MATERIAL
Given N ∈ N cells, a CA is defined as the regular spatial
structure of interconnected cells. Such an arrangement consti-
tutes the CA grid and may be n-dimensional; however, 1-, 2-
or 3-dimensional typologies are mostly utilized. Each CA cell
Ci stores the internal state variable si, where i ∈ [1,N ], which
evolves over time owing to the local interaction between cells.
In the simplest CA implementations, si is a single binary digit
or a number in a higher radix, but in more complex CA,
it might represent a state variable tuple.

The dynamics of si are described by a discrete-time math-
ematical expression, known as the CA rule, that involves
the cell’s state si as well as the states sj of the neighboring
cells, where j ∈ KC,i. The neighborhood KC,i includes the
cells within the interaction range r of each cell, which is
commonly selected as unity r = 1 to reduce the compu-
tational demands and, most significantly, ease the hardware
implementation requirements. For higher dimensions n ≥ 2,
the exact neighboring cells are differently defined by the
choice of the distance function; for example, usingManhattan
distance in a two-dimensional grid leads to the so-called
von Neumann (4-cell) neighborhood, while using Chebyshev
distance leads to the Moore (8-cell) neighborhood. The CA
rule is commonly shared among the cells, known as the
uniform rule, but in more complicated applications it may
vary, leading to a non-uniform CA rule within the grid. Dur-
ing the neighborhood’s definition, the boundary conditions
of the grid should also be defined since the edge cells are
missing some physical neighbors. This missing neighbor can
be considered a constant-valued entity (fixed boundaries) or,
most commonly, is replaced by the cells at the grid’s other
edges that also have missing neighbors (periodic or cyclic
boundaries), forming a closed space.

Considering the above CA features and their variety, the
design space for CA implementations is vast, and their appli-
cations are much more diverse. Elementary CA (ECA) is one
of the most studied and materialized CA due to its simplicity,
compatibility with digital systems, and Turing completeness.
In this section, the mathematical foundation of ECA is
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FIGURE 1. One-dimensional CA grid. The block diagram of the Memristor-based CA cell is elaborated within the second cell C2 to abstractly
visualize the circuit realization of the cell.

presented along with their generalization to Probabilistic CA,
where the transition rules become probabilistic, and the spe-
cial case of memristor-based CA (MemCA), where the prob-
abilistic rules are governed by the memristor’s probabilistic
transitions.

A. ELEMENTARY CELLULAR AUTOMATA
ECA are defined as 1-D arrays of binary state cells, si ∈

{0, 1}, which interact only with the adjacent cells in r = 1,
such as KC,i = {Cj

∣∣
|i−j|≤1}, so the CA rule f : {0, 1}3 →

{0, 1} is defined as

s′i = f (si−1, si, si+1) (1)

where s′i is the state of Ci at the next time-step. Therefore, the
rule expression constitutes a Boolean function of the current
state of the left neighbor L (si−1), the central cell itself C
(si), and the right neighbor R (si+1), denoted as LCR, and its
outcome defines the future state of the cell s′i.
Stephen Wolfram proposed a mnemonic notation [50] for

ECA’s rules, where each rule is uniquely named after the truth
table of f . Defining xu as the outcome of f (u) for u = LCRD,1

an 8-bit number (xB = x7x6x5x4x3x2x1x0) represents the
outcome for the eight input combinations. So, its decimal
representation (xD =

∑7
u=0 (xu2u)) names the ECA rule. For

example, the outcome set x = 00011110B is mapped to the
ECA rule fx for x = 30D, as shown in TABLE 1. Moreover,
each ECA rule fx can be mapped to a digital circuit with only
AND (Boolean multiplication) and OR (Boolean addition)
operators using the Karnaugh map method.

B. PROBABILISTIC CELLULAR AUTOMATA
Once the deterministic transitions that are governed by the
ECA rules are generalized to random transitions, proba-
bilistic variants of ECA arise. In such variants, known
as Probabilistic Cellular Automata (PCA) or Stochastic
Cellular Automata, the transition rule describes all the
conditional probabilities for a cell to be at a specific
state sx at the next time-step given every potential cur-
rent state combination LCR. The rule function is defined

1The subscript of a number defines its radix, i.e. B for binary and D for
decimal number.

TABLE 1. ECA rules in Wolfram’s notation and their probabilistic and
memristor-based generalizations.

as pfsx : {0, 1}3 → R∈[0,1], where

pfsx (LCR) = P(s′i = sx |LCR). (2)

According to the PCA notation proposed in [47], the prob-
abilistic rule is simply defined as the conditional probability
of a LCR combination resulting in the binary state sx = 1,
such as

pf(LCR) = P(s′i = 1 | LCR). (3)

Using the same notation as in ECA, now the outcome
of each input combination is a probability such as pf(u) =

P(s′i = 1 | u) = pu, where pu ∈ [0, 1]∈R. However, due
to the non-integer nature of pu, it is impossible to define
each probabilistic rule in a compact form as in the ECA case
but rather as pfpk, with pk = p7p6p5p4p3p2p1p0, shown in
TABLE 1. A special case of the probabilistic rule is when
any pu is equal to 0 or 1 which corresponds to a deterministic
transition, because the chances for s′i = 1 are 0% or 100%,
respectively. If all the probability coefficients are zero or one
(pu ∈ {0, 1} ∀ u), the probabilistic rule degenerates into a
deterministic ECA rule.

C. MEMRISTOR-BASED CELLULAR AUTOMATA
Utilizing its resistive state, a memristor device can effec-
tively store the binary cell state of an ECA cell. Therefore,
amemristor-based ECA cell can bematerialized by amemris-
torM for the cell state, a logic block for the rule, and auxiliary
circuitry for the memristor’s reprogramming, as illustrated in
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FIGURE 1. The rule block fx gathers the signals L, C , and R,
which carry the state information of the corresponding cell,
and delivers the outcome of fx to the control circuitry for
memristor programming. For fx(LCR) = 1 (fx(LCR) = 0),
memristor is programmed to the low (high) resistance state
LRS (HRS) by selecting the applied voltage as VP = VSET
(VP = VRST).

Since the cell state is kept on a single memristor, reading
and programming cannot be carried out in parallel. Hence,
each CA time-step is divided into the reading phase and the
programming phase, termed the writing phase. The signal
W/R manages the transition between these phases. Firstly,
W/R = 0 denotes the reading phase, where the memristor
state is read by a small-amplitude pulse VREAD and temporar-
ily stored in the Sample & Hold module. Following that, the
memristor is grounded for the writing, and the voltage VP,
as determined by fx , is applied to it.
Additionally, the MemCA cell can be exploited to execute

ECA rules probabilistically by tailoring the duration PW
and the amplitude VP of memristor programming pulses.
Stemming from the stochastic nature of memristor’s switch-
ing dynamics [51], a voltage-controlled probabilistic switch
can be implemented by utilizing memristor’s switching time,
which may be expressed as a Poisson process, such as

PSW (t) =
1t
τ

e−t/τ . (4)

In (4), 1t represents an infinitely small time interval
and τ is the amplitude-dependent memristor’s characteristic
SET/RESET switching time, which is expressed as

τ (V ) = τ0 exp(V/V0) (5)

where τ0 and V0 are fitting parameters acquired by
measurements on fabricated devices [52]. Given the
voltage-dependent switching probability, memristor devices
may be employed as statistically adjustable circuit elements.

The mathematical formulation of MemCA rules, a subset
of the generic PCA rules, has been proposed in [47] in light of
the memristor’s probabilistic switching as the required source
of randomness inside each CA cell. In particular, probabilistic
state transitions in MemCA are only observed when the rule
demands a state transition, i.e. s′i ̸= si, since the memristor’s
non-volatility does not allow unwanted cell states when there
is no state transition, i.e. s′i = si. The deterministic rule f77,
for example, demands state transition in two cases

(a) f77(000) = 1
(b) f77(111) = 0

else s′i = si. Given the SET and RESET probabilities pS and
pR, respectively, the MemCA probabilistic version of f77 is
represented as pf77,MemCA = pfpR100110pS (TABLE 1).

III. MemCA CIRCUIT DESIGN
CA are often built using FPGA-based digital circuits, uti-
lizing the well-established digital design tools, in contrast
to memristor-based ICs, which are in their infancy and
lack standard design procedures. However, local non-volatile

information storage and the integration of an entropy source,
implemented by digital randomness generators, in each CA
cell necessitate the development of complicated digital cir-
cuits per cell, which is unfavorable to system scalability.
Given that MemCA provides these features, its efficient
hardware implementation is essential for the realization of
MemCA processors that facilitate the formation of efficient
emergent computing approaches.

Despite the fact that memristor-based crossbar array
designs have already been presented [53], [54], [55], mixed
circuits with individual memristor and transistor devices for
ASICs need ad hoc design. Since MemCA transistor-level
design does not constitute a trivial task, in this section, the
transistor-level design of the proposed MemCA hardware
realization is presented. The CA cells, where the cell state
memristor is placed and programmed by the appropriate pro-
gramming circuitry, and the CARule module, which executes
the rule’s logical operations at each time-step, are the core
elements of theMemCA array. An all-memristor design strat-
egy is devised in this innovative approach, with memristors
employed in both CA cell and CA rule modules. Memristor
introduces the essential stochasticity in CA cells to execute
PCA tasks by utilizing memristor switching probability that
is manipulated by the amplitude of the externally controlled
programming pulse. Furthermore, thememristor-based cross-
bar array is employed in the CA rule module to allow rule’s
reprogramming on-the-fly, enabling the implementation of
CA algorithms.

A. MemCA CELL
Following the description of the MemCA cell in Section II,
for the proposed hybrid CMOS/Memristor design, the cell
has been built with the following five blocks or elements:
(a) programming and reading control module, (b) memristor
device, (c) a control module for the alternation of reading
and writing phases, (d) a sample-and-hold (S&H) module,
and (e) a sensing module. The MemCA cell’s block dia-
gram is shown in FIGURE 2(a), which also depicts the
external signals required for the cell’s functioning, while
the transistor-level design of each module of the CA cell
is shown in FIGURE 2(b). The external control signals are
distributed uniformly to all the cells, reducing the design
complexity of the whole CA. These global signals, illustrated
within the green area in FIGURE 2, are divided into the
phase-related ones (wave-like lines), which control the tran-
sition between the time-step phases, and the constant global
ones (flat lines) that manage the programming and reading
voltages. An explanation of how each block operates follows.
Vapplied Control: This module determines the voltage

applied to the memristor at each CA time-step phase
based on the CA rule’s outcome. The external signal VIN
results from the CA rule module and manages the polar-
ity of the memristor programming voltage. Additionally,
the inverted write-enable WEN and read-enable REN signals
are used for the transition between the writing and reading
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FIGURE 2. MemCA cell implementation. (a) Block diagram of the MemCA cell design where all the external local and global signals are also shown.
(b) The transistor-level design of the hybrid CMOS/Memristor MemCA cell realization.

phases. Throughout the latter, the read voltage VREAD is
provided to the memristor. In particular, the Vapplied Con-
trol module consists of a number of PMOS and NMOS
transistors that control the applied voltages on the mem-
ristor by alternating the programming path based on the
CA rule’s outcome, for writing, or applying VREAD, for
reading.
Memristor: It is the core element of the proposed CA

cell with a two-fold operation: (I) stores CA cell state in a
non-volatile manner, and (II) introduces randomness in the
MemCA cells.
Mem-S&H Control: It functions as a single-pole double-

throw (SPDT) switch. It is composed of a pair of NMOS
transistors (M7, M9) that ground the memristor for the writ-
ing phase and a PMOS transistor (M10) that connects the
memristor to the S&H module for the reading phase. REN
andWEN are utilized to manage the timing of the reading and
writing phases.
S&H: Analog sample-and-hold element that gets charged

during the reading phase and maintains its charge in the
course of the writing phase while memristor is reprogrammed
to the next state. This module is comprised of a capacitor-
NMOS (COUT-M11) pair, where the CA cell state is tem-
porarily stored. During reading, the NMOS transistor M11
is appropriately biased to modulate the charging time of the
capacitor, but during writing, M11 is biased to cut-off to
prevent the discharge of COUT. Moreover, at the end of the
writing phase, M11 is biased to be fully conductive for the
instant discharge of COUT before the reading phase of the next
CA time-step. The sampling time is globally controlled by the
signal VC,RST.
Sense Cell State: This module continuously monitors the

value stored in S&H and shifts it to the logic levels required
by the CA rule module. It is made up of three CMOS invert-
ers, the first two of which serve as voltage level amplifiers
since the amplitude of VREAD is low, and the third of which
supplies the complementary cell output required by the CA
rule module.

To illustrate the operation of all these CA cell module sub-
circuits, all the phases of the CA time-step are described in
chronological sequence, thus, first, reading, then writing, and
lastly clearing, which is a brief sub-phase of writing.

1) READING PHASE
Memristor is connected to S&H, and a reading pulse with
low voltage amplitude VREAD is applied through the Vapplied
Control circuit. The write-enableWEN signal is LOW so M2,
M5, M7, and M9 are in the cut-off region, detaching the
programming voltages VSET and VRST. Therefore, the bias of
M1, M4, M6, and M8 is insignificant. On the other hand, the
PMOS transistorsM3 andM10 are conductive, as the inverted
read-enable REN signal is LOW, and, in combination with the
sub-threshold biasing of M11 (VC,RST = VVD), a conductive
path that charges COUT through memristor is created. The
selection of VVD tunes M11’s resistance (ROUT) during the
reading phase and manages the S&H module’s time constant
and the VCell’s charging amplitude. Based on the current
memristor’s state LRS or HRS, COUT is charged to a high or
low VCell level, respectively. The reading phase conductive
path is shown in FIGURE 3(a), where each transistor is illus-
trated by the corresponding open or closed switch, depending
on its reading phase bias. The insignificant transistors for this
phase are depicted by the don’t care (X) symbol, while the
potentiometer symbol indicates the adjustable output resis-
tance.

2) WRITING PHASE
The memristor is grounded and receives the proper pro-
gramming voltage from the Vapplied Control circuit, while
S&H holds the charged VCell level that controls CA cell’s
output and should be constant during the writing phase.
In specific, REN is HIGH, biasing M10 to the cut-off, while
WEN is HIGH, so the NMOS transistors M7 and M9 are
fully conductive to allow the grounding of the memristor.
Here is where the outcome of the CA rule module, driven
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FIGURE 3. CA cell’s operational part during (a) the reading phase, the writing phase of a CA time-step when VIN is at (b) HIGH and (c) LOW voltage level,
and (d) the clearing phase of a CA time-step.

into the CA cell by VIN and VIN, plays an important role.
When VIN is HIGH (LOW), M1 and M8 (M4 and M6) are
in the cut-off region, so the only conductive path is from
VSET (VRST) to ground through M4-M5-memristor-M6-M7
(M1-M2-memristor-M8-M9), as shown in Figs. 3(b) and (c).
In this manner, the programming of the memristor is accom-
plished based on the polarity of the voltage across thememris-
tor with no need for negative applied voltage within the CA
cell module. Also, VC,RST biases M11 to the cut-off region
during the writing phase to prevent the COUT’s discharge.

3) CLEARING PHASE
Special consideration has to be given at the very end of
the writing phase, which is dedicated to the complete dis-
charging, i.e. clearing, of COUT. This is necessary to avoid
any unwanted pre-charging of COUT from a prior time-step
affects the charging level of VCell during the reading phase.
In specific, VC,RST biases M11 to the conductive state for a
very short time and VCell drops to zero. During this phase,
all the other timing-dependent transistors of the CA cell are
biased at the cut off region to prevent any undesired influence
on thememristor since the CA rulemodule is directly affected
by the change of VCell.
Importantly, the actual circuit topology and programming

circuitry differ slightly from the abstract visualization in
FIGURE 1. The special directional memristor programming
circuit is proposed in this paper to avoid the use of negative
voltages, which are necessary for the programming of bipolar
memristors where SET and RESET are only possible with
opposite polarities. In specific, incorporating negative volt-
age in CMOS-based design imposes extra limitations as the
ground connection, used in digital circuits, should be replaced
by the negative supply voltage, and, necessarily, the opera-
tional voltage span would be doubled. Since memristors need
higher programming amplitude than the operational volt-
age of CMOS technology, duplicating the voltage span that
also covers memristor programming amplitudes is prohibitive
for modern power- and area-efficient transistor technologies
with small feature sizes. As a result, the use of 180 nm or
larger transistor technology for the mixed CMOS/Memristor

circuits would be necessary, imposing frequency, power, and
area limitations in the whole CA cell design. Thus, despite
the slight increase in total transistor number per CA cell for
the proposed directional memristor programming, the lack
of negative programming voltage permits the use of 32 nm
transistor technology, achieving ultra-fast operating speed
that is not harmed by the transistor technology specification,
as well as area efficiency and low power consumption.

In a conventional CMOS design, a CA cell should be
designed as a 1-bit register to store cell state, which com-
monly means a single D flip-flop composed of 18 transis-
tors in its simpler form. Comparing the proposed hybrid
CMOS/Memristor CA cell with the purely CMOS conven-
tional approach, theMemCA cell achieves a similar transistor
count (17 transistors and a capacitor) while providing local
non-volatile storage of cell state, which is impossible for its
pure-CMOS counterpart.

B. MemCA RULE
In the proposed MemCA implementation, memristor-based
crossbar arrays are employed for the realization of the CA
rule module due to their reprogramming ability, non-volatile
storage, and compact area footprint. Memristor crossbar is
not only used to store the Boolean function of the CA rule
but also to execute it, with the help of a read-out circuit, and
provides the next time-step cell state to the CA cell module.

In particular, this unique memristor-based topology,
in which memristors are arranged at the intersections
of horizontal (rows) and vertical (columns) perpendicular
nanowires, may be used for logical operations such as AND
and OR logic gates. When voltages are applied to the rows
(inputs), the current in each column is controlled by the
conductance of the memristors at each crosspoint. Thus,
by appropriately programming the conductance of eachmem-
ristor, the column current (output) may perform arithmetic
and logic operations.

Because of its tremendous efficiency in performing mas-
sively parallel matrix-vector multiplications and simulating
synaptic connections in the brain, this topology is frequently
employed in memristor-based neural network accelerators
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FIGURE 4. CA Rule module. (a) Memristor-based crossbar array and
(b) read-out circuit for the implementation of any CA rule.

and neuromorphic computing today. However, multi-level
memristor programming and/or continuous reprogramming
are required in such systems. Both are considered memris-
tor properties that are being developed and improved since
the variability of memristors is harmful to precise program-
ming and constant reprogramming of memristor conduc-
tance. Albeit, since the rule fx in ECA is a predetermined
Boolean expression, no crossbar array reprogramming or
multi-level memristor programming is required.

Realizing any ECA rule fx with a memristor crossbar,
a small 6×4 crossbar is required for each CA cell, which
is designed as illustrated in FIGURE 4(a). By appropriately
setting each memristor to a high or low resistance state (HRS,
LRS), each column may execute a single AND logic opera-
tion, while a read-out circuit senses column current and exe-
cutes the necessary OR logic operation for all the columns.
The rows operate as the fx inputs, so six rows are necessary
for the three cell state signals L,C,R and for their three com-
plements L,C,R, which drive the PMOS selectors, one per
row, in order to enable only the selected crosspoints. On the
other hand, the number of columns is defined by the number
of OR operands in fx , which can be up to 8 for an unopti-
mized three-input Boolean function, as there are 8 different

input combinations. However, since any three-input Boolean
expression can be optimized by the Karnaugh map method
to have a maximum of four OR operands, a four-column
crossbar is sufficient for implementing any ECA rule fx ;
nevertheless, in their majority, fewer columns are required,
so the memristors of the extra columns are programmed to
HRS to prevent affecting the computation.

In regards to the way that ECA rules are implemented
inside the crossbar, each crosspoint is made up of a PMOS
transistor and a memristor (1T1R), where the memristor
is used as a reprogrammable resistor. Each crossbar row
nanowire (Rowi) is connected directly to the PMOS selectors
of the row, where each selector is in series with a memristor
and the selector’s gate terminal is connected to a control line
(CTRLi). The other terminal of the memristor is connected
to the column nanowire (Colj) that accumulates the column’s
current. In this configuration, when PMOS is conductive,
the row voltage drops on the memristor, leading to a current
weighted by the memristor’s state. When the memristor is
in LRS (HRS), there is a high (low) contribution to the
column’s current. In the proposed CA rule implementation,
a fixed voltage is applied to row nanowires (Row1−6) and
each selector line to a single input voltage. In this way, the CA
cell outputs are isolated as they drive transistor gates and they
are not affected by the resistance state of crossbar memristors.

More specifically, the necessary crossbar memristors must
be programmed at the LRS for the execution of AND opera-
tions in a crossbar column so that when all of the required
inputs are in logic ‘1’, sufficient current will flow in the
column. As long as PMOS selectors invert the gate signal,
as they are conductive at low gate voltage, the memristor
programming should also be inverted. Therefore, to imple-
ment any AND gate within the crossbar that needs a logical
‘1’ at any input signal, the memristor at the crosspoint of
this input signal should be programmed at HRS, while the
memristor at the inverted of this input should be programmed
at LRS. In addition, special consideration is needed when
an input signal is not required at a specific AND operation,
so memristors at both the input signal and its inverse should
be programmed at LRS so at least one of them will provide
the necessary current flow contribution to the column. This
special rule is required to maintain the same current levels
regardless of the number of AND gate inputs.

Given the proper crossbar memristor programming, the
current at a Colj will be adequate only when the designed
AND gate yields to a logical ‘1’. All of the crossbar columns
may be configured to perform various AND operations. The
Rule Read-Out circuit performs column current sensing along
with the OR operation on all columns. This circuit’s role is to
output the result of a designed ECA rule fx and feed it to the
CA cell module. More particularly, a sense resistor RSENSE
receives each column’s current, and its voltage VCi drives
the gate of a NMOS transistor, as shown in FIGURE 4(b).
The drain terminals of the four sense transistors M18-M21
are linked together, forming pseudo-NOR gate with the
PMOS transistor M22, which is fixed to the conductive state.

VOLUME 11, 2023 45789



V. Ntinas et al.: MemCA: All-Memristor Design for Deterministic and Probabilistic CA Hardware Realization

Pseudo-NOR’s result is then reversed by a CMOS inverter,
yielding the OR operation of the four columns. Because the
amplitude on RSENSE is low, it is insufficient to drive the
pseudo-NOR to full supply amplitude; therefore, only half
amplitude (VDD/2) is supplied to the pseudo-NOR and the
subsequent inverter. The full supply range is restored by two
following full-amplitude inverters, while one more inverter
is added to produce the complement of the rule’s outcome,
which is also needed in the CA cell module.

In comparison, a pure-CMOS implementation of a fully
reprogrammable CA rule realization would require an 8:1
multiplexer that consists of more than 100 transistors and,
still, cannot store the CA rule locally. So, the proposed
MemCA rule design achieves both a lower transistor count
and the non-volatile storing of the rule. Remarkably, in the
proposed MemCA implementation, the probabilistic transi-
tion of each CA cell state is performed within the CA cell
by properly selecting VSET and VRST; thus, the rule design
remains unchanged for either deterministic or probabilistic
CA operations.

C. SIMULATION MODELS AND DESIGN PARAMETERS
The proposed MemCA implementation is a general design
technique that is capable of incorporating several kinds
of bipolar memristor devices and transistor technologies.
In order to accurately simulate the behavior of actual mem-
ristors in the MemCA circuit, the Jülich Aachen resistive
switching tools (JART) valance change mechanism (VCM)
device model is used [56], while the NMOS and PMOS
transistors are modeled using the BSIM v4 transistor model
with the parameter set for 32 nm transistor technology from
the Predictive Transistor Model (PTM) [57].

The JART VCM memristor model captures the behavior
of ReRAM devices in which state switching is dependent on
valance change mechanisms. In these devices, the switching
of the memristor’s conductivity is evident when the applied
signal induces an electric field within the switching layer that
leads to the movement of the oxygen vacancies. The interface
of the switching layer with the electrode forms a Schottky
barrier that becomes lower as the oxygen vacancy concen-
tration near the interface increases. When a negative voltage
is provided to the device, SET is performed, attracting oxy-
gen vacancies at the interface, lowering the Schottky barrier,
and decreasing the resistance of that region. During RESET,
a positive voltage at the device repels oxygen vacancies from
the interface’s vicinity, causing their concentration to drop
and the Schottky barrier to rise.

The key processes of VCM-based devices have been
investigated for a considerable amount of time [58], [59],
[60], [61], since they have been observed in a broad vari-
ety of memristor device materials, like HfOx , TiOx , TaOx ,
ZrOx [58], [62]. Therefore, the JART VCMmemristor model
can properly describe the dynamics and conduction pro-
cesses of diverse memristor devices. In addition, in [56], the
inclusion of device variability into the memristor model is

TABLE 2. Parameter range for variability-aware JART VCM memristors.

achieved by appropriately changing specific physical param-
eters inspired by the switching behavior observed in real
devices. Noteworthy, to truly reproduce the gradual stochas-
tic fluctuation of physical entities during the operation of
fabricated memristor devices, the modification of the model
parameters in [56] that arises from the cycle-to-cycle vari-
ability of the devices is performed during simulation by an
algorithmic technique based on random walks. More specif-
ically, the change of each variability-related parameter of
the model in the course of the simulation is emulated by a
random walker that performs small steps within the prede-
fined parameter bounds in a randomly selected direction, i.e.
positive or negative change.

Utilizing the JART VCM memristor model and 32 nm
transistors, the CA cell and CA rule circuits are developed
properly to achieve rapid memristor programming and CA
cell operation. It should be noted that the switching speed
of a memristor is greatly dependent on the amplitude of the
programming pulse, with a minor increase resulting in orders
of magnitude quicker switching. However, since small-sized
transistor technologies restrict the maximum voltage ampli-
tude within the circuit, the switching speed of the memristor
is limited. In the proposed MemCA design, a completely
functional circuit is developed with a CA time-step of 100 ns.

During simulation, the JARTVCMVerilog-A implementa-
tion is used, as provided in [63], with the proposed parameters
fitting the behavior of a Pt/Ti/TiOx /HfO2/Pt device. The ran-
dom walk approach was used to determine the variability of
each individual CA cell memristor, so multiple parameter sets
were produced using the parameter ranges specified in [56]
(cf. TABLE 2). Considering MemCA’s simple requirements
for the memristor crossbar operation, i.e. binary memristor
programming and lack of reprogramming during simulation,
we are not considering here the peripheral circuitry for the
programming of crossbar memristors, which is well-studied
in the literature [53]. Also, for the simulations, the CA rule
module memristors are initialized to a maximum or minimum
resistance state based on the needs of the desired ECA rule,
but no variability is taken into account since they are only
programmed once at the start of system operation and are not
subjected to switching.

Taking into account the memristor’s SET and RESET
voltages and resistance values LRS and HRS, the CA cell
is properly built in such a way that the maximum available
VSET and VRST values allow for deterministic switching of
the memristor device in the desired time-frame. In addition,
a key goal of the proposed design is the ability to perform
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TABLE 3. Channel WMi/LMi ratio for the transistors of the MemCA design.

FIGURE 5. Single CA cell operation for s0 = 0 and s0 = 1. (a) Control
signals. (b) Internal voltage in the S&H module VCell. (c) Output signal of
the CA cell VOUT. (d) Voltage dropped on the memristor and (e) memristor
internal state variable.

probabilistic switching with no design changes other than the
selection of VSET and VRST.
Delving into the design parameters, the power supply is set

to VDD =2V to ensure that all signals at HIGH voltage level
are equal to 2V and at LOW voltage level are equal to 0V.
The REN signal, which controls transistor M10, is given extra
care with a special Vhigh = 0.85VDD, as neither of its termi-
nals is connected to supply or ground. Also, VDD/2 is chosen
for the reading pulse, while COUT =714 fF and VVD =0.4V
are selected to obtain a low S&H’s time constant, achieving a
short reading phase duration, i.e. τread =17 ns. The length of
the writing phase is set at τwrite =100 ns to provide sufficient
time for memristor switching, and the last tclear =5 ns of the
writing pulse are utilized to discharge VCell.
Regarding the CA rule module, each row is connected to

a fixed voltage Vrow = VDD/2, while the sense resistances
are selected as RSENSE =1.4 k�. The length of each tran-
sistor channel is set throughout the design at the minimum
node size of the technology, thus LMi =32 nm. On the con-
trary, the transistor channel’s width is carefully determined
for each individual transistor, resulting in different WMi/LMi
ratios shown in TABLE 3. Due to the considerably higher
current that runs through the memristor in LRS, the tran-
sistors in the CA cell’s RESET path (M1, M2, M8, M9)
must be substantially larger than those in the SET path
(M4, M5, M6, M7).

TABLE 4. Memristor array programming to implement ECA rule f30.

IV. MemCA OPERATION
This section demonstrates both the deterministic and proba-
bilistic operations of the proposed MemCA implementation.
To begin with, a single cell starting from two distinct initial
states s0 = {0, 1} is showcased in FIGURE 5 to illustrate
the global control signals, the internal cell voltages, and
the memristor’s state during two CA time-steps. Moreover,
to highlight the memristor’s programming within the pro-
posed cell, the two possible rule outcomes fx = {1, 0} are
also depicted. By selecting the maximum programming pulse
amplitudes (VSET = VRST = VDD), the rapid switching of
the memristor’s state is obvious in FIGURE 5(e), ensuring
deterministic CA operation.

Beyond the single cell, a CA rule module is required to
implement the desired rule for each CA cell module in order
to build a complete CA array. The interconnection between
CA cell modules and the CA rule modules for three adjacent
cells is depicted in FIGURE 6. The global signals are shared
among the CA array elements for the synchronization of
the massive parallel cells’ operation. On the other hand, the
CA cell’s outputs are only locally distributed to the CA rule
modules of the neighbors, keeping the information processing
purely local.

A. DETERMINISTIC OPERATION
The rule f30 is implemented to exemplify the deterministic
functioning of the whole CA array. So, thememristors of each
crossbar are properly programmed to execute rule 30 through
the following optimized Boolean function

f30,xbar = f30,Col1 + f30,Col2 + f30,Col3 + f30,Col4
= L · R+ L · C + L · C · R+ 0 (6)

As long as the optimized Boolean function of rule 30 is com-
prised of three non-zero terms, memristor devices from only
three crossbar columns need to be selectively programmed
to LRS; hence, (6) is realized by programming the crossbar
array shown in FIGURE 4(a) according to TABLE 4.

An exemplary CA grid, with N = 8 and the rule 30 in
deterministic mode, is simulated to verify the system’s proper
operation. The cells are initialized to logical ‘0’, i.e. CA cell
module’s memristor starts at HRS, apart from a single cell
that starts from logical ‘1’, i.e. its memristor begins at LRS,
in order to trigger the CA array’s evolution. The boundary
conditions are periodic. FIGURE 7(a) depicts the time evo-
lution of the CA rule module for each cell f30,i (left y-axis)
and the memristor’s state in each cell (right y-axis), while
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FIGURE 6. Block diagram of CA array’s realization with the proposed memristor-based modules. Three consecutive cells are presented and the
connectivity of the CA rule module signals is highlighted.

FIGURE 7. Time evolution of the (a) CA rule module, memristor’s state
and (b) output voltage for each CA cell for ECA rule f30.

FIGURE 7(b) shows the time evolution of each CA cell’s
output voltage VOUT,i.

B. PROBABILISTIC OPERATION
In the context of the probabilistic MemCA, the choice
of lower programming voltages results in the probabilistic
switching of memristor devices in CA cells. To elaborate
on the probabilistic operation, the effect of the memristor’s
probabilistic programming is first investigated on a single
cell, while the spatiotemporal behavior of aMemCA structure
with all cells in probabilistic mode is later studied.

1) SINGLE MemCA CELL
In an effort to stress the switching rate of a single CA cell,
the rule f51 is selected, which is implemented by a single NOT
logic gate and, therefore, always results in a cell state change.
Rule f51 could serve as an ideal random number generator
whether both the memristor’s SET and RESET probabilities
are equal to 50%. Unfortunately, such a condition is not
feasible for manufactured memristors mostly because their
device-to-device variability impacts the exact {VSET,VRST}

combination required for each memristor device to attain a
50% switching probability. Additionally, the RESET switch-
ing time greatly relies on the resistance state of the memristor
at the start of programming. Therefore, the slower RESET

FIGURE 8. Single cell (a) SET and (b) RESET probability for various VSET
and VRST voltages and programming pulse time PW.

speed of a memristor when it begins with a lower LRS value
results in a multi-factorial control of switching, so the RESET
probability is not only determined by VRST in practical
applications.

To analyze MemCA cell’s probabilistic state transitions
in the proposed implementation, an individual cell with the
rule f51 is simulated for various {VSET,VRST} combinations.
Additionally, the influence of the programming pulse’s dura-
tion on the MemCA cell’s transition probability is exam-
ined. Such is plausible with this novel design by modulating
the time of the clearing phase (τclear), which is part of the
writing phase. Because the memristor is separated from any
applied voltage during the clearing phase, the programming
pulse length may be modulated by manipulating the external
global signals without changing the circuitry. As a bench-
mark, a single CA cell is simulated for 400 CA time-steps
to calculate the SET and RESET switching probabilities of
the whole cell. VSET and VRST were set to different values
in the range [1.2, 1.6]V and [1.3, 1.5]V, respectively, and
the programming pulse width was set to five distinct values,
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FIGURE 9. CA evolution diagram for the 8-cell MemCA with rule f110 for PW = {95, 75, 50}ns and three {VSET, VRST} pairs,
i.e. {2, 2}V, {1.6, 1.4}V and {1.325, 1.375}V. In each CA evolution diagram, the y-axis represents each cell of the 8-cell array
and the x-axis corresponds to discrete CA time-steps. Each MemCA cell output VOUT,i is low (si,t = 0) for the white cells
and VOUT,i is high (si,t = 1) for the black ones, while, the dark red and green cells represents the RESET and SET transition
failure of the cell at that CA time-step, respectively.

i.e. PW = {50, 40, 30, 20, 10}ns. Figures 8(a) and (b) show
the probability of switching for the SET and the RESET
processes, respectively. A 2D data smoother was used to
eliminate the effect of outliers in the visualization of switch-
ing probabilities with the heatmap and better highlight the
average effect of PW. As shown, the switching probability
for SET or RESET is not reliant only on VSET or VRST,
respectively, but on the combination of {VSET,VRST}, as the
exact LRS value reached after a VSET pulse influences the
subsequent RESET process.

2) MULTI-CELL MemCA ARRAY
An 8-bit MemCA is simulated to analyze the spatiotemporal
characteristics of the probabilistic operation. A different rule
is chosen to display the versatility of the proposed CA rule
module. Particularly, the CA rule modules are set to the rule
f110, which was investigated from a theoretical standpoint
in [47]. The optimized Boolean function for rule 110 is the
following

f110,xbar = f110,Col1 + f110,Col2 + f110,Col3 + f110,Col4
= L · R+ C · R+ C · R+ 0 (7)

which is realized by programming the crossbar array shown
in FIGURE 4(a) according to TABLE 5.

In this example, as a single non-zero cell does not trigger
any rich CA evolution for this rule, the CA array is initiated
in the randomly selected initial state {0, 1, 1, 0, 0, 0, 1, 0}.
Each simulation performed 200 CA time-steps, where
both the cycle-to-cycle and the device-to-device variabil-
ity of memristors are included. Moreover, aiming to study
the influence of applied voltage on CA’s evolution, three
distinct {VSET,VRST} combinations were simulated, i.e.
{VSET,VRST} = {2, 2}V, {1.6, 1.4}V, {1.325, 1.375}V. The
first combination results in deterministic switching, whereas

TABLE 5. Memristor array programming to implement ECA rule f110.

the other two result in arbitrarily chosen probabilistic switch-
ing with different switching probabilities. Because of the
larger amplitude of programming voltages, the combination
{VSET,VRST} = {1.6, 1.4}V is chosen to investigate low
probability of switching failures, whereas the combination
{VSET,VRST} = {1.325, 1.375}V is chosen for high proba-
bility of switching failures. Furthermore, the effect of pro-
gramming pulse duration is explored by simulating each
{VSET,VRST} combination for three different pulse widths,
namely PW = {95, 75, 50}ns. Because memristor switching
processes are heavily reliant on applied voltage amplitude,
the influence of pulse length is anticipated to be less pro-
nounced than the effect of pulse amplitude.

The temporal evolution of MemCA hardware, in discrete
CA time-steps, is depicted for each of the 9 {VSET,VRST,PW}

simulated combinations in FIGURE 9. Only 50 first CA
time-steps are displayed for readability, with low VOUT,i (si =

0) in white and high VOUT,i (si = 1) in black. Moreover,
unsuccessful CA cell state transitions are characterized as
transition failures and are colored differently in FIGURE 9;
i.e., RESET transition failures are represented by dark red
cells, whereas SET transition failures are represented by
green cells.

MemCA time-evolution when {VSET,VRST} = {2, 2}V
follows the deterministic ECA evolution owing to the
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FIGURE 10. (a) Generated number sequence for each example in FIGURE 9. The 8-cell MemCA array is mapped to an 8-bit integer number and the
corresponding time-series for 200 CA time-steps is illustrated. (b) Auto-correlation function of the CA time-series presented in (a).

assured memristor’s switching for high-amplitude program-
ming pulses, even when the pulse width is lowered (PW =

{75ns, 50ns}), as illustrated in the first row of FIGURE 9.
If lower programming voltages are used, transition failures
occur, such as in the second and third rows of FIGURE 9.
For both SET and RESET transitions, the {1.325, 1.375}V
combination yields more frequent transition failures than the
{1.6, 1.4}V combination, as predicted. Also, whenever the
length of the programming pulse is shortened, the frequency
of transition failures increases in each of the aforementioned
two programming voltage combinations.

The generated number sequence of the 8-cell MemCA
example also reveals the influence of the programming pulse
amplitude and duration. The 8-cell MemCA array produces
an 8-bit value in each CA time-step, since the MemCA cell
state is binary, so the generated number sequence is the
time-series of the integer representation of this 8-bit value.
Figure 10(a) visualizes the generated number sequence for
all the nine simulated {VSET,VRST,PW} combinations for
all the simulation time, i.e. 200 CA time-steps. Given that
there are no transition failures for the deterministic mode,
the time series for the highest programming voltage selection
displays a repeated pattern that satisfies the deterministic
ECA rule f110. The other two voltage settings, on the other
hand, cause transition failures that distort the time-series. The
{1.6, 1.4}V case, in particular, has a few transition failures
that cause minor deviations from the deterministic pattern,
but the lowest programming pulse case exhibits numerous
transition failures that regularly modify the evolution pattern,
resulting in a less predictable time-series.

Analyzing now the decreasing programming duration, the
two lowest programming pulse pairs exhibit a less pre-
dictable pattern because transition failure occurrence rises
with decreasing PW. Nevertheless, CA’s state transition
ceases to exist for the lowest PW as the lack of proper CA rule
evolution leads to certain global CA states that do not yield
state transition, leaving the whole CA grid stuck at this state.
Each CA rule may show its unique stuck-at states that result
from the local rule, the initial state, and the CA array size. Due
to its multi-parametric nature, it is hard to forecast such states
via theoretical investigations. For instance, f30 has a stuck-at
global state only when the CA array size is even [64].

In the presence of transition failure, CA’s time-series may
deviate from the deterministic pattern, which is visible in
MemCA for lower and/or shorter programming pulses. These
deviations may lead to normally inaccessible global states
from the deterministic pattern, which results in more visited
global states and a higher time-series’ entropy, which is bene-
ficial for random sequence generation. Conversely, it permits
the undesired emergence of stuck-at global states.

3) EVALUATION OF MemCA TIME-SERIES PREDICTABILITY
Using the auto-correlation function (ACF), the generated pat-
tern’s predictability is assessed. ACF, in particular, calculates
the correlation between a signal and its delayed duplicate. The
formula for the auto-correlation coefficient is

rq =
1
T

∑T−q
t=1 (yt − y) (yt+k − y)

Var(y)
(8)

where q is the lag, which denotes the number of time-steps
delay for the delayed time-series, T stands for the total num-
ber of time-steps, yt is the value of the time-series at the
tth time-step, and y and Var(y) are the mean value and the
variance of the time-series, respectively.

In order to portray the periodic occurrence of repeating
patterns in the time-series, the ACF of each simulated CA
time-series is calculated. For the simulated time-series, the
lag may be any integer number between 0 to 199 and T =

200, due to the 200 simulated CA time-steps. The autocorre-
lation coefficient is always maximal for zero lag, i.e. r0 = 1,
whereas rq ∈ (−1, 1)∀q > 0. When rq is outside of the
confidence interval, a statistically significant correlation is
detected. To attain a 95% confidence level, the confidence
interval is chosen as twice the standard error (SE), which is
expressed as SE = 1/

√
T . The calculated ACF for the nine

{VSET,VRST,PW} combinations is shown in FIGURE 10(b)
with the 95% confidence level bounds denoted by the blue
horizontal lines.

In the highest programming amplitude cases, the ACF
demonstrates high rq for a certain q, which corresponds to the
period of a repetitive pattern. It is obvious that many rq values
exceed the confidence interval bounds, meaning that there
is a significant correlation at these lags. For the {1.6, 1.4}V
scenario, the amplitude of the high rq values is decreased due
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to the small deviations in the time-series that were induced by
the transition failures, however, there are still many rq out of
the confidence interval, in both PW = 95ns and PW = 75ns
cases. On the other hand, for the lowest amplitude pair, the
higher occurrence frequency of transition failures led to a
much more unpredictable time-series, which is observed in
the third row of FIGURE 10(b) by the much lower rq value
that lies within or very near to the confidence interval. Inter-
estingly, the ACF of the {1.325V, 1.375V, 75ns} combination
shows that the generated time-series is strongly uncorrelated,
with only one coefficient, i.e. r2, out, but very near, of the
confidence interval. Furthermore, the two cases where the
CA grid arrived at a stuck-at global state, show a strong
correlation as the time-series becomes constant.

V. CONCLUSION
Cellular Automata hardware is currently severely con-
strained, owing to the unavailability of universal CA real-
ization that can provide reprogrammable CA for any rule
and neighborhood setup. Employing memristors in CA
hardware implementations, on the other hand, has been
found to improve CA dynamics and enable fast CA appli-
cations. Despite the fact that deterministic approaches
of memristor-based CA implementations yield high-speed,
low-power, and dense-area implementations, probabilistic
memristor-based CA variations have been poorly investigated
yet.

Among these lines, an all-memristor CA design with a
detailed transistor-level hybrid CMOS/memristor approach is
proposed, using memristors in both the implementation of
the CA cell and the CA rule circuits. Compared to conven-
tional CMOS approaches, MemCA achieves similar or lower
transistor counts while offering local non-volatile storing of
both cell states and CA rules. Such an innovative approach
provides high versatility in the selection of the ECA rule and
the memristor’s switching probability, which could form a
general CA hardware. The operation of theMemCA approach
is shown in both a deterministic and probabilistic manner,
illustrating the fast speed of the system and the ability to
increase CA’s unpredictability by considering the memristor
as the necessary entropy source. The proposed hardware
realization allows the implementation of CA algorithms that
can provide efficient solutions to real-time applications like
cryptography, stochastic computing and reservoir computing.
Consequently, the proposed hybrid CMOS/Memristor design
permits the modification of both the CA rule, even locally
inside each cell, and the transition probability, resulting in a
generic framework for implementing ECA and PCA at the
nanoscale level.
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