17 research outputs found

    Understanding the leading indicators of hospital admissions from COVID-19 across successive waves in the UK

    Full text link
    Following the UK Government's Living with COVID-19 Strategy and the end of universal testing, hospital admissions are an increasingly important measure of COVID-19 pandemic pressure. Understanding leading indicators of admissions at National Health Service (NHS) Trust, regional and national geographies help health services plan capacity needs and prepare for ongoing pressures. We explored the spatio-temporal relationships of leading indicators of hospital pressure across successive waves of SARS-CoV-2 incidence in England. This includes an analysis of internet search volume values from Google Trends, NHS triage calls and online queries, the NHS COVID-19 App, lateral flow devices and the ZOE App. Data sources were analysed for their feasibility as leading indicators using linear and non-linear methods; granger causality, cross correlations and dynamic time warping at fine spatial scales. Consistent temporal and spatial relationships were found for some of the leading indicators assessed across resurgent waves of COVID-19. Google Trends and NHS queries consistently led admissions in over 70% of Trusts, with lead times ranging from 5-20 days, whereas an inconsistent relationship was found for the ZOE app, NHS COVID-19 App, and rapid testing, that diminished with granularity, showing limited autocorrelation of leads between -7 to 7 days. This work shows that novel syndromic surveillance data has utility for understanding the expected hospital burden at fine spatial scales. The analysis shows at low level geographies that some surveillance sources can predict hospital admissions, though care must be taken in relying on the lead times and consistency between waves

    Real-time COVID-19 hospital admissions forecasting with leading indicators and ensemble methods in England

    Full text link
    Hospitalisations from COVID-19 with Omicron sub-lineages have put a sustained pressure on the English healthcare system. Understanding the expected healthcare demand enables more effective and timely planning from public health. We collect syndromic surveillance sources, which include online search data, NHS 111 telephonic and online triages. Incorporating this data we explore generalised additive models, generalised linear mixed-models, penalised generalised linear models and model ensemble methods to forecast over a two-week forecast horizon at an NHS Trust level. Furthermore, we showcase how model combinations improve forecast scoring through a mean ensemble, weighted ensemble, and ensemble by regression. Validated over multiple Omicron waves, at different spatial scales, we show that leading indicators can improve performance of forecasting models, particularly at epidemic changepoints. Using a variety of scoring rules, we show that ensemble approaches outperformed all individual models, providing higher performance at a 21-day window than the corresponding individual models at 14-days. We introduce a modelling structure used by public health officials in England in 2022 to inform NHS healthcare strategy and policy decision making. This paper explores the significance of ensemble methods to improve forecasting performance and how novel syndromic surveillance can be practically applied in epidemic forecasting

    Diversity of symptom phenotypes in SARS-CoV-2 community infections observed in multiple large datasets

    Get PDF
    Variability in case severity and in the range of symptoms experienced has been apparent from the earliest months of the COVID-19 pandemic. From a clinical perspective, symptom variability might indicate various routes/mechanisms by which infection leads to disease, with different routes requiring potentially different treatment approaches. For public health and control of transmission, symptoms in community cases were the prompt on which action such as PCR testing and isolation was taken. However, interpreting symptoms presents challenges, for instance in balancing sensitivity and specificity of individual symptoms with the need to maximise case finding, whilst managing demand for limited resources such as testing. For both clinical and transmission control reasons, we require an approach that allows for the possibility of distinct symptom phenotypes, rather than assuming variability along a single dimension. Here we address this problem by bringing together four large and diverse datasets deriving from routine testing, a population-representative household survey and participatory smartphone surveillance in the United Kingdom. Through use of cutting-edge unsupervised classification techniques from statistics and machine learning, we characterise symptom phenotypes among symptomatic SARS-CoV-2 PCR-positive community cases, making comparisons across datasets and by age bands. While we observe separation due to the total number of symptoms experienced by cases, we also see a separation of symptoms into gastrointestinal, respiratory and other types, and different symptom co-occurrence patterns at the extremes of age. In this way, we are able to demonstrate the deep structure of symptoms of COVID-19 without usual biases due to study design.Comment: 52 pages; 25 figure

    Public perceptions and interactions with UK COVID-19 Test, Trace and Isolate policies, and implications for pandemic infectious disease modelling.

    Get PDF
    BACKGROUND: The efforts to contain SARS-CoV-2 and reduce the impact of the COVID-19 pandemic have been supported by Test, Trace and Isolate (TTI) systems in many settings, including the United Kingdom. Mathematical models of transmission and TTI interventions, used to inform design and policy choices, make assumptions about the public’s behaviour in the context of a rapidly unfolding and changeable emergency. This study investigates public perceptions and interactions with UK TTI policy in July 2021, assesses them against how TTI processes are conceptualised and represented in models, and then interprets the findings with modellers who have been contributing evidence to TTI policy. METHODS: 20 members of the public recruited via social media were interviewed for one hour about their perceptions and interactions with the UK TTI system. Thematic analysis identified key themes, which were then presented back to a workshop of pandemic infectious disease modellers who assessed these findings against assumptions made in TTI intervention modelling. Workshop members co-drafted this report. RESULTS: Themes included education about SARS-CoV-2, perceived risks, trust, mental health and practical concerns. Findings covered testing practices, including the uses of and trust in different types of testing, and the challenges of testing and isolating faced by different demographic groups. This information was judged as consequential to the modelling process, from guiding the selection of research questions, influencing choice of model structure, informing parameter ranges and validating or challenging assumptions, to highlighting where model assumptions are reasonable or where their poor reflection of practice might lead to uninformative results. CONCLUSIONS: We conclude that deeper engagement with members of the public should be integrated at regular stages of public health intervention modelling

    Public perceptions and interactions with UK COVID-19 Test, Trace and Isolate policies, and implications for pandemic infectious disease modelling

    Get PDF
    Background The efforts to contain SARS-CoV-2 and reduce the impact of the COVID-19 pandemic have been supported by Test, Trace and Isolate (TTI) systems in many settings, including the United Kingdom. Mathematical models of transmission and TTI interventions, used to inform design and policy choices, make assumptions about the public’s behaviour in the context of a rapidly unfolding and changeable emergency. This study investigates public perceptions and interactions with UK TTI policy in July 2021, assesses them against how TTI processes are conceptualised and represented in models, and then interprets the findings with modellers who have been contributing evidence to TTI policy. Methods 20 members of the public recruited via social media were interviewed for one hour about their perceptions and interactions with the UK TTI system. Thematic analysis identified key themes, which were then presented back to a workshop of pandemic infectious disease modellers who assessed these findings against assumptions made in TTI intervention modelling. Workshop members co-drafted this report. Results Themes included education about SARS-CoV-2, perceived risks, trust, mental health and practical concerns. Findings covered testing practices, including the uses of and trust in different types of testing, and the challenges of testing and isolating faced by different demographic groups. This information was judged as consequential to the modelling process, from guiding the selection of research questions, influencing choice of model structure, informing parameter ranges and validating or challenging assumptions, to highlighting where model assumptions are reasonable or where their poor reflection of practice might lead to uninformative results. Conclusions We conclude that deeper engagement with members of the public should be integrated at regular stages of public health intervention modelling.</ns4:p

    martyn1fyles/HouseholdContactTracing

    No full text
    Household-contact-tracing is a model which aims to produce estimates of the effectiveness of contact tracing for the SARS-CoV-2 epidemic. As household structure is particularly important for the SARS-CoV-2 epidemic, we have paid particular attention to the interactions between contact tracing and the household structure. For example, if one person in a household tests positive it is reasonable to expect that all other members of the household immediately take up isolation. For other recent contacts of a case, they will be contact traced following a random delay. A tutorial notebook in notebooks > tutorial.ipynb has been created which provides examples of how to calibrate the model and to perform simulations. We have provided the code required to reproduce the results in our paper on household contact tracing

    Bayesian spatial modelling of localised SARS-CoV-2 transmission through mobility networks across England.

    No full text
    In the early phases of growth, resurgent epidemic waves of SARS-CoV-2 incidence have been characterised by localised outbreaks. Therefore, understanding the geographic dispersion of emerging variants at the start of an outbreak is key for situational public health awareness. Using telecoms data, we derived mobility networks describing the movement patterns between local authorities in England, which we have used to inform the spatial structure of a Bayesian BYM2 model. Surge testing interventions can result in spatio-temporal sampling bias, and we account for this by extending the BYM2 model to include a random effect for each timepoint in a given area. Simulated-scenario modelling and real-world analyses of each variant that became dominant in England were conducted using our BYM2 model at local authority level in England. Simulated datasets were created using a stochastic metapopulation model, with the transmission rates between different areas parameterised using telecoms mobility data. Different scenarios were constructed to reproduce real-world spatial dispersion patterns that could prove challenging to inference, and we used these scenarios to understand the performance characteristics of the BYM2 model. The model performed better than unadjusted test positivity in all the simulation-scenarios, and in particular when sample sizes were small, or data was missing for geographical areas. Through the analyses of emerging variant transmission across England, we found a reduction in the early growth phase geographic clustering of later dominant variants as England became more interconnected from early 2022 and public health interventions were reduced. We have also shown the recent increased geographic spread and dominance of variants with similar mutations in the receptor binding domain, which may be indicative of convergent evolution of SARS-CoV-2 variants

    Understanding the infection severity and epidemiological characteristics of mpox in the UK

    No full text
    Abstract In May 2022, individuals infected with the monkeypox virus were detected in the UK without clear travel links to endemic areas. Understanding the clinical characteristics and infection severity of mpox is necessary for effective public health policy. The study period of this paper, from the 1st June 2022 to 30th September 2022, included 3,375 individuals that tested positive for the monkeypox virus. The posterior mean times from infection to hospital admission and length of hospital stay were 14.89 days (95% Credible Intervals (CrI): 13.60, 16.32) and 7.07 days (95% CrI: 6.07, 8.23), respectively. We estimated the modelled Infection Hospitalisation Risk to be 4.13% (95% CrI: 3.04, 5.02), compared to the overall sample Case Hospitalisation Risk (CHR) of 5.10% (95% CrI: 4.38, 5.86). The overall sample CHR was estimated to be 17.86% (95% CrI: 6.06, 33.11) for females and 4.99% (95% CrI: 4.27, 5.75) for males. A notable difference was observed between the CHRs that were estimated for each sex, which may be indicative of increased infection severity in females or a considerably lower infection ascertainment rate. It was estimated that 74.65% (95% CrI: 55.78, 86.85) of infections with the monkeypox virus in the UK were captured over the outbreak

    Understanding the leading indicators of hospital admissions from COVID-19 across successive waves in the UK.

    Get PDF
    Following the UK Government's Living with COVID-19 Strategy and the end of universal testing, hospital admissions are an increasingly important measure of COVID-19 pandemic pressure. Understanding leading indicators of admissions at National Health Service (NHS) Trust, regional and national geographies help health services plan capacity needs and prepare for ongoing pressures. We explored the spatio-temporal relationships of leading indicators of hospital pressure across successive SARS-CoV-2 incidence waves in England. This analysis includes an evaluation of internet search volumes from Google Trends, NHS triage calls and online queries, the NHS COVID-19 App, lateral flow devices (LFD) and the ZOE App. Data sources were analysed for their feasibility as leading indicators using linear and non-linear methods; Granger causality, cross correlation and dynamic time warping at fine spatial scales. Consistent temporal and spatial relationships were found for some of the leading indicators assessed across resurgent COVID-19 Omicron waves. Google Trends and NHS triages consistently temporally led admissions in the majority of locations, with lead times ranging from 5-20 days, whereas an inconsistent relationship was found for the ZOE app, NHS COVID-19 App, and LFD testing, that diminished with spatial resolution, showing limited cross correlation of leads between -7 to 7 days. The results indicate that novel surveillance sources can be used effectively to understand the expected healthcare burden within hospital administrative areas. However, understanding the temporal and spatial heterogeneity of these relationships is a key determinant of their operational public health utility

    The role of regular asymptomatic testing in reducing the impact of a COVID-19 wave

    No full text
    Testing for infection with SARS-CoV-2 is an important intervention in reducing onwards transmission of COVID-19, particularly when combined with the isolation and contact-tracing of positive cases. Many countries with the capacity to do so have made use of lab-processed Polymerase Chain Reaction (PCR) testing targeted at individuals with symptoms and the contacts of confirmed cases. Alternatively, Lateral Flow Tests (LFTs) are able to deliver a result quickly, without lab-processing and at a relatively low cost. Their adoption can support regular mass asymptomatic testing, allowing earlier detection of infection and isolation of infectious individuals. In this paper we extend and apply the agent-based epidemic modelling framework Covasim to explore the impact of regular asymptomatic testing on the peak and total number of infections in an emerging COVID-19 wave. We explore testing with LFTs at different frequency levels within a population with high levels of immunity and with background symptomatic PCR testing, case isolation and contact tracing for testing. The effectiveness of regular asymptomatic testing was compared with ‘lockdown’ interventions seeking to reduce the number of non-household contacts across the whole population through measures such as mandating working from home and restrictions on gatherings. Since regular asymptomatic testing requires only those with a positive result to reduce contact, while lockdown measures require the whole population to reduce contact, any policy decision that seeks to trade off harms from infection against other harms will not automatically favour one over the other. Our results demonstrate that, where such a trade off is being made, at moderate rates of early exponential growth regular asymptomatic testing has the potential to achieve significant infection control without the wider harms associated with additional lockdown measures
    corecore