108 research outputs found

    Probability Weighted Compact Feature for Domain Adaptive Retrieval

    Full text link
    Domain adaptive image retrieval includes single-domain retrieval and cross-domain retrieval. Most of the existing image retrieval methods only focus on single-domain retrieval, which assumes that the distributions of retrieval databases and queries are similar. However, in practical application, the discrepancies between retrieval databases often taken in ideal illumination/pose/background/camera conditions and queries usually obtained in uncontrolled conditions are very large. In this paper, considering the practical application, we focus on challenging cross-domain retrieval. To address the problem, we propose an effective method named Probability Weighted Compact Feature Learning (PWCF), which provides inter-domain correlation guidance to promote cross-domain retrieval accuracy and learns a series of compact binary codes to improve the retrieval speed. First, we derive our loss function through the Maximum A Posteriori Estimation (MAP): Bayesian Perspective (BP) induced focal-triplet loss, BP induced quantization loss and BP induced classification loss. Second, we propose a common manifold structure between domains to explore the potential correlation across domains. Considering the original feature representation is biased due to the inter-domain discrepancy, the manifold structure is difficult to be constructed. Therefore, we propose a new feature named Histogram Feature of Neighbors (HFON) from the sample statistics perspective. Extensive experiments on various benchmark databases validate that our method outperforms many state-of-the-art image retrieval methods for domain adaptive image retrieval. The source code is available at https://github.com/fuxianghuang1/PWCFComment: Accepted by CVPR 2020; The source code is available at https://github.com/fuxianghuang1/PWC

    Case report: Resolution of Guillain-Barré syndrome in a patient with dual primary tumors after treatment with rituximab

    Get PDF
    Guillain-Barré syndrome (GBS) is a rare immune-related adverse event (irAE) that can occur in solid tumors such as hepatocellular carcinoma, gastric cancer, breast cancer, and colorectal cancer. It is characterized by progressive myasthenia and mild sensory abnormalities. The emergence of immune checkpoint inhibitors (ICIs) has significantly improved cancer patients’ life expectancy but can also trigger various irAEs, including GBS. We report a rare case of GBS in a 64-year-old male patient with dual primary tumors of the colon and stomach who received toripalimab and chemotherapy for liver metastases. After five treatments, the patient experienced weakness and numbness in his limbs. Lumbar puncture, electromyography, and other tests confirmed the diagnosis of GBS. Intravenous immunoglobulin (IVIG) and methylprednisolone did not improve the patient’s symptoms, but rituximab, which is not a standard regimen for GBS, was effective in eliminating B cells and improving symptoms. Following this, we effectively shifted from a regimen combining immunotherapy and chemotherapy to a targeted therapy regimen, resulting in prolonged patient survival. Currently, limited studies have been undertaken to evaluate the efficacy of rituximab in managing refractory neurological adverse events associated with ICI therapy. Using this case, we reviewed similar cases and formed our views

    The interaction between different types of activated RAW 264.7 cells and macrophage inflammatory protein-1 alpha

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Two major ways of macrophage (MΦ) activation can occur in radiation-induced pulmonary injury (RPI): classical and alternative MΦ activation, which play important roles in the pathogenesis of RPI. MΦ can produce chemokine MΦ inflammatory protein-1α (MIP-1α), while MIP-1α can recruit MΦ. The difference in the chemotactic ability of MIP-1α toward distinct activated MΦ is unclear. We speculated that there has been important interaction of MIP-1α with different activated MΦ, which might contribute to the pathogenesis of RPI.</p> <p>Methods</p> <p>Classically and alternatively activated MΦ were produced by stimulating murine MΦ cell line RAW 264.7 cells with three different stimuli (LPS, IL-4 and IL-13); Then we used recombinant MIP-1α to attract two types of activated MΦ. In addition, we measured the ability of two types of activated MΦ to produce MIP-1α at the protein or mRNA level.</p> <p>Results</p> <p>Chemotactic ability of recombinant MIP-1α toward IL-13-treated MΦ was the strongest, was moderate for IL-4-treated MΦ, and was weakest for LPS-stimulated MΦ (p < 0.01). The ability of LPS-stimulated MΦ to secrete MIP-1α was significantly stronger than that of IL-4-treated or IL-13-treated MΦ (p < 0.01). The ability of LPS-stimulated MΦ to express MIP-1α mRNA also was stronger than that of IL-4- or IL-13-stimulated MΦ (p < 0.01).</p> <p>Conclusions</p> <p>The chemotactic ability of MIP-1α toward alternatively activated MΦ (M2) was significantly greater than that for classically activated MΦ (M1). Meanwhile, both at the mRNA and protein level, the capacity of M1 to produce MIP-1α is better than that of M2. Thus, chemokine MIP-1α may play an important role in modulating the transition from radiation pneumonitis to pulmonary fibrosis <it>in vivo</it>, through the different chemotactic affinity for M1 and M2.</p

    Gene therapy with tumor-specific promoter mediated suicide gene plus IL-12 gene enhanced tumor inhibition and prolonged host survival in a murine model of Lewis lung carcinoma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene therapy is a promising therapeutic approach for cancer. Targeted expression of desired therapeutic proteins within the tumor is the best approach to reduce toxicity and improve survival. This study is to establish a more effective and less toxic gene therapy of cancer.</p> <p>Methods</p> <p>Combined gene therapy strategy with recombinant adenovirus expressing horseradish peroxidase (HRP) mediated by human telomerase reverse transcriptase (hTERT) promoter (AdhTERTHRP) and murine interleukin-12 (mIL-12) under the control of Cytomegalovirus (CMV) promoter (AdCMVmIL-12) was developed and evaluated against Lewis lung carcinoma (LLC) both <it>in vivo </it>and <it>in vitro</it>. The mechanism of action and systemic toxicities were also investigated.</p> <p>Results</p> <p>The combination of AdhTERTHRP/indole-3-acetic acid (IAA) treatment and AdCMVmIL-12 resulted in significant tumor growth inhibition and survival improvement compared with AdhTERTHRP/IAA alone (tumor volume, 427.4 ± 48.7 mm<sup>3 </sup><it>vs </it>581.9 ± 46.9 mm<sup>3</sup>, <it>p </it>= 0.005 on day 15; median overall survival (OS), 51 d <it>vs </it>33 d) or AdCMVmIL-12 alone (tumor volume, 362.2 ± 33.8 mm<sup>3 </sup><it>vs </it>494.4 ± 70.2 mm<sup>3</sup>, <it>p </it>= 0.046 on day 12; median OS, 51 d <it>vs </it>36 d). The combination treatment stimulated more CD4<sup>+ </sup>and CD8<sup>+ </sup>T lymphocyte infiltration in tumors, compared with either AdCMVmIL-12 alone (1.3-fold increase for CD4<sup>+ </sup>T cells and 1.2-fold increase for CD8<sup>+ </sup>T cells, <it>P </it>< 0.01) or AdhTERTHRP alone (2.1-fold increase for CD4<sup>+ </sup>T cells and 2.2-fold increase for CD8<sup>+ </sup>T cells, <it>P </it>< 0.01). The apoptotic cells in combination group were significantly increased in comparison with AdCMVmIL-12 alone group (2.8-fold increase, <it>P </it>< 0.01) or AdhTERTHRP alone group (1.6-fold increase, <it>P </it>< 0.01). No significant systematic toxicities were observed.</p> <p>Conclusions</p> <p>Combination gene therapy with AdhTERTHRP/IAA and AdCMVmIL-12 could significantly inhibit tumor growth and improve host survival in LLC model, without significant systemic adverse effects.</p

    Treatment with PPAR Agonist Clofibrate Inhibits the Transcription and Activation of SREBPs and Reduces Triglyceride and Cholesterol Levels in Liver of Broiler Chickens

    Get PDF
    PPAR agonist clofibrate reduces cholesterol and fatty acid concentrations in rodent liver by an inhibition of SREBP-dependent gene expression. In present study we investigated the regulation mechanisms of the triglyceride-and cholesterol-lowering effect of the PPAR agonist clofibrate in broiler chickens. We observed that PPAR agonist clofibrate decreases the mRNA and protein levels of LXR and the mRNA and both precursor and nuclear protein levels of SREBP1 and SREBP2 as well as the mRNA levels of the SREBP1 (FASN and GPAM) and SREBP2 (HMGCR and LDLR) target genes in the liver of treated broiler chickens compared to control group, whereas the mRNA level of INSIG2, which inhibits SREBP activation, was increased in the liver of treated broiler chickens compared to control group. Taken together, the effects of PPAR agonist clofibrate on lipid metabolism in liver of broiler chickens involve inhibiting transcription and activation of SREBPs and SREBP-dependent lipogenic and cholesterologenic gene expression, thereby resulting in a reduction of the triglyceride and cholesterol levels in liver of broiler chickens

    Development of an Infectious Cell Culture System for Hepatitis C Virus Genotype 6a Clinical Isolate Using a Novel Strategy and Its Sensitivity to Direct-Acting Antivirals

    Get PDF
    Hepatitis C virus (HCV) is classified into seven major genotypes, and genotype 6 is commonly prevalent in Asia, thus reverse genetic system representing genotype 6 isolates in prevalence is required. Here, we developed an infectious clone for a Chinese HCV 6a isolate (CH6a) using a novel strategy. We determined CH6a consensus sequence from patient serum and assembled a CH6a full-length (CH6aFL) cDNA using overlapped PCR product-derived clones that shared the highest homology with the consensus. CH6aFL was non-infectious in hepatoma Huh7.5 cells. Next, we constructed recombinants containing Core-NS5A or 5′UTR-NS5A from CH6a and the remaining sequences from JFH1 (genotype 2a), and both were engineered with 7 mutations identified previously. However, they replicated inefficiently without virus spread in Huh7.5 cells. Addition of adaptive mutations from CH6a Core-NS2 recombinant, with JFH1 5′UTR and NS3-3′UTR, enhanced the viability of Core-NS5A recombinant and acquired replication-enhancing mutations. Combination of 22 mutations in CH6a recombinant with JFH1 5′UTR and 3′UTR (CH6aORF) enabled virus replication and recovered additional four mutations. Adding these four mutations, we generated two efficient recombinants containing 26 mutations (26m), CH6aORF_26m and CH6aFL_26m (designated “CH6acc”), releasing HCV of 104.3–104.5 focus-forming units (FFU)/ml in Huh7.5.1-VISI-mCherry and Huh7.5 cells. Seven newly identified mutations were important for HCV replication, assembly, and release. The CH6aORF_26m virus was inhibited in a dose- and genotype-dependent manner by direct-acting-antivirals targeting NS3/4A, NS5A, and NS5B. The CH6acc enriches the toolbox of HCV culture systems, and the strategy and mutations applied here will facilitate the culture development of other HCV isolates and related viruses

    Effect of ex vivo-expanded γδ-T cells combined with galectin-1 antibody on the growth of human cervical cancer xenografts in SCID mice

    No full text
    Objective: To investigate the antitumor activity of ex vivo-expanded γδ-T cells derived from tumor-infiltrating lymphocytes(γδTILs) from cervical cancer patients when combined with galectin-1 antibody and studied both in vitro and in vivo. Methods: The presence of γδTILs in cervical cancer specimens was detected by immunohistochemistry and γδTILs were expanded using the solid-phase antibody method. The expression of galectin-1 by the human cervical cancer cell line, SiHa, was measured by Western blot and ELISA. In vitro cytotoxic activities of expanded γδTILs, with or without galectin-1 inhibitor, were determined using the LDH-release test. In vivo antitumor activity of γδTILs, combined with galectin-1 antibody, was evaluated using the SCID mouse model. Results: γδTILs existed in the cervical cancer and the percentage of TCRγδ+ cells in γδTILs after ex vivo expansion was 91.2±1.2% detected by flow cytometry. SiHa cell expressed and secreted galectin-1 as measured by Western blot and ELISA. Expanded γδTILs from human cervical cancer demonstrated marked cytotoxicity to SiHa or Hela cells. In comparison with non-treated group, the cytotoxicity of γδ TILs towards SiHa or Hela cell was significantly increased when effector and target cells were incubated with either lactose or galectin-1 antibody at E/T ratio of 1:1 (p < 0.05). γδTILs, in combination with galectin-1 antibody treatment, significantly suppressed the growth of xenografts in SCID mice, in comparison with all other groups (p < 0.05). γδTILs alone also showed the ability to inhibit tumour growth in vivo, but were more efficient when combined with specific antibody (p < 0.05). Conclusion: Taken together, our results suggest that γδ-T cells, combined with galectin-1 antibody treatment, could be a more effective adoptive immunotherapy for patients with cervical cancer than traditional adoptive immunotherapy methods
    corecore