252 research outputs found

    Feeding Cattle for Profit

    Get PDF
    Price paid for feeders and cost of gain are the two big items in returns from feeding cattle. Here is an analysis of this season\u27s cattle feeding prospects and a worksheet for figuring cost of gain and feed requirements

    Clonal integration in Ludwigia hexapetala under different light regimes

    Get PDF
    Physiological integration among ramets of invasive plant species may support their colonization and spread in novel aquatic environments where growth-limiting resources are spatially heterogeneous. Under contrasting light conditions, we investigated how clonal integration influences growth, biomass allocation and morphology of Ludwigia hexapetala, an emergent floating-leaved macrophyte that is highly invasive in a range of wetland habitat types. In aquatic mesocosms, stolons of offspring ramets were either connected or severed from parent plants, with the pairs exposed to homogenous or heterogeneous combinations of sun or 85% shade. Morphological traits of all ramets were strongly influenced by light environment, and low light availability decreased plant growth, regardless of integration status. Allocation patterns varied with light regime; shaded plants increased allocation to leaf biomass while sun plants allocated more resources to belowground growth. Offspring ramets integrated with parents produced more biomass, suggesting a fitness advantage through integration. However, parent ramet performance declined with stoloniferous integration; integrated parents produced fewer ramets and allocated more resources to belowground biomass. For most response variables measured, there was no significant interactive effect between light treatment and integration, although parents growing in the shade attached to an offspring in the sun increased root mass ratio. The ability to establish and spread into new environments is a key trait of invasive plants, and physiological integration of resources may improve the establishment of juvenile ramets across variable light environments during early colonization. Physiological integration in patchy light environments may contribute to the invasiveness of Ludwigia hexapetala

    Resprouting potential of rhizome fragments from invasive macrophyte reveals superior colonization ability of the diploid congener

    Get PDF
    Non-native aquatic Ludwigia species from a polyploid complex are among the world’s most problematic invasive plants. These emergent, floating-leaved species respond to disturbance through fragmentation of shoots and/or rhizomes, spreading rapidly by hydrochorous dispersal and posing challenges for invasive plant management. While recruitment of clonal aquatic plant species from shoot fragmentation is well documented, regeneration from rhizome bud banks, although common, often is overlooked. It is further unclear how interactions among ploidy and resource availability influence regeneration success of rhizome fragments. We conducted a full factorial experiment in aquatic mesocosms to compare trait responses of Ludwigia congeners differing in ploidy (diploid, decaploid) grown from clonal rhizome fragments under contrasting soil nutrient availability (low, high). Similar to previous work with shoot fragments, the diploid congener had a higher relative growth rate and produced more biomass than the decaploid during this establishment stage of growth. High growth rates and biomass production were associated with greater rhizome N and P and reduced investment in below-ground structures. Comparing these results to previous shoot fragment studies with Ludwigia, rhizome fragments appear to have much greater growth potential, suggesting that management strategies should minimize disturbance to prevent fragmentation and dispersal of below-ground structures. Furthermore, rapid response to newly colonizing diploid invaders will be essential to minimizing spread, and reductions in nutrient loads to aquatic environments may be more effective towards controlling establishment of the diploid congener than the decaploid

    Resprouting potential of rhizome fragments from invasive macrophyte reveals superior colonization ability of the diploid congener

    Get PDF
    Non-native aquatic Ludwigia species from a polyploid complex are among the world’s most problematic invasive plants. These emergent, floating-leaved species respond to disturbance through fragmentation of shoots and/or rhizomes, spreading rapidly by hydrochorous dispersal and posing challenges for invasive plant management. While recruitment of clonal aquatic plant species from shoot fragmentation is well documented, regeneration from rhizome bud banks, although common, often is overlooked. It is further unclear how interactions among ploidy and resource availability influence regeneration success of rhizome fragments. We conducted a full factorial experiment in aquatic mesocosms to compare trait responses of Ludwigia congeners differing in ploidy (diploid, decaploid) grown from clonal rhizome fragments under contrasting soil nutrient availability (low, high). Similar to previous work with shoot fragments, the diploid congener had a higher relative growth rate and produced more biomass than the decaploid during this establishment stage of growth. High growth rates and biomass production were associated with greater rhizome N and P and reduced investment in below-ground structures. Comparing these results to previous shoot fragment studies with Ludwigia, rhizome fragments appear to have much greater growth potential, suggesting that management strategies should minimize disturbance to prevent fragmentation and dispersal of below-ground structures. Furthermore, rapid response to newly colonizing diploid invaders will be essential to minimizing spread, and reductions in nutrient loads to aquatic environments may be more effective towards controlling establishment of the diploid congener than the decaploid

    Diseases of Oats.

    Get PDF
    8 p

    Interactive effects of salinity and inundation on native Spartina foliosa, invasive S. densiflora and their hybrid from San Francisco Estuary, California

    Get PDF
    Sea level rise (SLR) associated with climate change is intensifying permanent submersion and salinity in salt marshes. In this scenario, hybridization between native and invasive species may result in hybrids having greater tolerance of abiotic stress factors than their parents. Thus, understanding the responses of native and invasive halophytes and their hybrids to interacting physiological stresses imposed by SLR is key to native species conservation. We analysed how salinity, inundation depth and their interaction impact the functional traits of native and invasive cordgrass species and their hybrid (genus Spartina; Poaceae)

    Trait responses of invasive aquatic macrophyte congeners: colonizing diploid outperforms polyploid

    Get PDF
    Understanding traits underlying colonization and niche breadth of invasive plants is key to developing sustainable management solutions to curtail invasions at the establishment phase, when efforts are often most effective. The aim of this study was to evaluate how two invasive congeners differing in ploidy respond to high and low resource availability following establishment from asexual fragments. Because polyploids are expected to have wider niche breadths than diploid ancestors, we predicted that a decaploid species would have superior ability to maximize resource uptake and use, and outperform a diploid congener when colonizing environments with contrasting light and nutrient availability. A mesocosm experiment was designed to test the main and interactive effects of ploidy (diploid and decaploid) and soil nutrient availability (low and high) nested within light environments (shade and sun) of two invasive aquatic plant congeners. Counter to our predictions, the diploid congener outperformed the decaploid in the early stage of growth. Although growth was similar and low in the cytotypes at low nutrient availability, the diploid species had much higher growth rate and biomass accumulation than the polyploid with nutrient enrichment, irrespective of light environment. Our results also revealed extreme differences in time to anthesis between the cytotypes. The rapid growth and earlier flowering of the diploid congener relative to the decaploid congener represent alternate strategies for establishment and success

    Soil depth and geographic distance modulate bacterial β-diversity in deep soil profiles throughout the U.S. Corn Belt

    Get PDF
    Understanding how microbial communities are shaped across spatial dimensions is of fundamental importance in microbial ecology. However, most studies on soil biogeography have focused on the topsoil microbiome, while the factors driving the subsoil microbiome distribution are largely unknown. Here we used 16S rRNA amplicon sequencing to analyse the factors underlying the bacterial β-diversity along vertical (0–240 cm of soil depth) and horizontal spatial dimensions (~500,000 km2) in the U.S. Corn Belt. With these data we tested whether the horizontal or vertical spatial variation had stronger impacts on the taxonomic (Bray-Curtis) and phylogenetic (weighted Unifrac) β-diversity. Additionally, we assessed whether the distance-decay (horizontal dimension) was greater in the topsoil (0–30 cm) or subsoil (in each 30 cm layer from 30–240 cm) using Mantel tests. The influence of geographic distance versus edaphic variables on the bacterial communities from the different soil layers was also compared. Results indicated that the phylogenetic β-diversity was impacted more by soil depth, while the taxonomic β-diversity changed more between geographic locations. The distance-decay was lower in the topsoil than in all subsoil layers analysed. Moreover, some subsoil layers were influenced more by geographic distance than any edaphic variable, including pH. Although different factors affected the topsoil and subsoil biogeography, niche-based models explained the community assembly of all soil layers. This comprehensive study contributed to elucidating important aspects of soil bacterial biogeography including the major impact of soil depth on the phylogenetic β-diversity, and the greater influence of geographic distance on subsoil than on topsoil bacterial communities in agroecosystems
    • …
    corecore