3,110 research outputs found

    New BPS Solitons in 2+1 Dimensional Noncommutative CP^1 Model

    Full text link
    Investigating the solitons in the non-commutative CP1CP^{1} model, we have found a new set of BPS solitons which does not have counterparts in the commutative model.Comment: 8 pages, LaTeX2e, references added, improvements to discussions, Version to be published in JHE

    Spin wave dispersion softening in the ferromagnetic Kondo lattice model for manganites

    Full text link
    Spin dynamics is calculated in the ferromagnetic (FM) state of the generalized Kondo lattice model taking into account strong on-site correlations between e_g electrons and antiferromagnetic (AFM) exchange among t_{2g} spins. Our study suggests that competing FM double-exchange and AFM super-exchange interaction lead to a rather nontrivial spin-wave spectrum. While spin excitations have a conventional Dq^2 spectrum in the long-wavelength limit, there is a strong deviation from the spin-wave spectrum of the isotropic Heisenberg model close to the zone boundary. The relevance of our results to the experimental data are discussed.Comment: 6 RevTex pages, 3 embedded PostScript figure

    Entanglement Cost of Three-Level Antisymmetric States

    Get PDF
    We show that the entanglement cost of the three-dimensional antisymmetric states is one ebit.Comment: 8page

    Continuous phase transition and negative specific heat in finite nuclei

    Get PDF
    The liquid-gas phase transition in finite nuclei is studied in a heated liquid-drop model where the nuclear drop is assumed to be in thermodynamic equilibrium with its own evaporated nucleonic vapor conserving the total baryon number and isospin of the system. It is found that in the liquid-vapor coexistence region the pressure is not a constant on an isotherm indicating that the transition is continuous. At constant pressure, the caloric curve shows some anomalies, namely, the systems studied exhibit negative heat capacity in a small temperature domain. The dependence of this specific feature on the mass and isospin of the nucleus, Coulomb interaction and the chosen pressure is studied. The effects of the presence of clusters in the vapor phase on specific heat have also been explored.Comment: 18 pages, 13 figures; Phys. Rev. C (in press

    Dust properties in the cold and hot gas phases of the ATLAS3D early-type galaxies as revealed by AKARI

    Full text link
    The properties of the dust in the cold and hot gas phases of early-type galaxies (ETGs) are key to understand ETG evolution. We thus conducted a systematic study of the dust in a large sample of local ETGs, focusing on relations between the dust and the molecular, atomic, and X-ray gas of the galaxies, as well as their environment. We estimated the dust temperatures and masses of the 260 ETGs from the ATLAS3D survey, using fits to their spectral energy distributions primarily constructed from AKARI measurements. We also used literature measurements of the cold (CO and HI) and X-ray gas phases. Our ETGs show no correlation between their dust and stellar masses, suggesting inefficient dust production by stars and/or dust destruction in X-ray gas. The global dust-to-gas mass ratios of ETGs are generally lower than those of late-type galaxies, likely due to dust-poor HI envelopes in ETGs. They are also higher in Virgo Cluster ETGs than in group and field ETGs, but the same ratios measured in the central parts of the galaxies only are independent of galaxy environment. Slow-rotating ETGs have systematically lower dust masses than fast-rotating ETGs. The dust masses and X-ray luminosities are correlated in fast-rotating ETGs, whose star formation rates are also correlated with the X-ray luminosities. The correlation between dust and X-rays in fast-rotating ETGs appears to be caused by residual star formation, while slow-rotating ETGs are likely well evolved, and thus exhausting their dust. These results appear consistent with the postulated evolution of ETGs, whereby fast-rotating ETGs form by mergers of late-type galaxies and associated bulge growth, while slow-rotating ETGs form by (dry) mergers of fast-rotating ETGs. Central cold dense gas appears to be resilient against ram pressure stripping, suggesting that Virgo Cluster ETGs may not suffer strong related star formation suppression.Comment: 18 pages, 7 figures, accepted for publication in A&

    Metabolic phenotyping of genetically diverged species in Gramineae

    Get PDF

    Locality, Causality and Noncommutative Geometry

    Full text link
    We analyse the causality condition in noncommutative field theory and show that the nonlocality of noncommutative interaction leads to a modification of the light cone to the light wedge. This effect is generic for noncommutative geometry. We also check that the usual form of energy condition is violated and propose that a new form is needed in noncommutative spacetime. On reduction from light cone to light wedge, it looks like the noncommutative dimensions are effectively washed out and suggests a reformulation of noncommutative field theory in terms of lower dimensional degree of freedom. This reduction of dimensions due to noncommutative geometry could play a key role in explaining the holographic property of quantum gravity.Comment: 16 pages, LaTeX, 4 figure

    Evacuation Planning Based on the Contraflow Technique With Consideration of Evacuation Priorities and Traffic Setup Time

    Get PDF
    Evacuation planning with the contraflow technique is a complex planning problem. The problem is further complicated when more realistic situations such as evacuation priorities and the setup time for the contraflow operation are considered. Such a complex problem has yet to be discussed in the present literature. In this paper, we present a multipleobjective optimization model for this problem and a two-layer algorithm to solve this model. Experiments on three transportation networks with different network scales are presented to show the excellent performance of the proposed model and algorithm.published_or_final_versio
    • 

    corecore