1,758 research outputs found

    Efficient low-threshold lasers based on an erbium-doped holey fiber

    Get PDF
    We report experimental results on the continuous-wave lasers based on a small core erbium-doped holey fiber. In a simple Fabry-Perot-type cavity with high output coupling, we demonstrate low-threshold (0.55 mW) high slope-efficiency (57.3%) operation confirming both the quality and exceptionally high gain efficiency of the fiber. In an all-fiber ring cavity where the cavity loss is reduced, we show that it is possible to achieve a low-threshold laser with extremely wide tunability (>100 nm around 1550 nm). Our results illustrate some of the unique opportunities provided by active small core holey fibers

    1 um Excess Sources in the UKIDSS - I. Three T Dwarfs in the SDSS Southern Equatorial Stripe

    Get PDF
    We report the discovery of two field brown dwarfs, ULAS J0128-0041 and ULAS J0321+0051, and the rediscovery of ULAS J0226+0051 (IfA 0230-Z1), in the Sloan Digital Sky Survey (SDSS) southern equatorial stripe. They are found in the course of our follow-up observation program of 1 um excess sources in the United Kingdom Infrared Telescope Infrared Deep Sky Survey. The Gemini Multi-Object Spectrographs spectra at red optical wavelengths (6500-10500 A) are presented, which reveal that they are early-T dwarfs. The classification is also supported by their optical to near-infrared colors. It is noted that ULAS J0321+0051 is one of the faintest currently known T dwarfs. The estimated distances to the three objects are 50-110 pc, thus they are among the most distant field T dwarfs known. Dense temporal coverage of the target fields achieved by the SDSS-II Supernova Survey allows us to perform a simple time-series analysis, which leads to the finding of significant proper motions of 150-290 mas/yr or the transverse velocities of 40-100 km/s for ULAS J0128-0041 and ULAS J0226+0051. We also find that there are no detectable, long-term (a-few-year) brightness variations above a few times 0.1 mag for the two brown dwarfs.Comment: Accepted for publication in the Astronomical Journal; Typos correcte

    The Subaru/XMM-Newton Deep Survey (SXDS) -VII. Clustering Segregation with Ultraviolet and Optical Luminosities of Lyman-Break Galaxies at z~3

    Full text link
    We investigate clustering properties of Lyman-break galaxies (LBGs) at z~3 based on deep multi-waveband imaging data from optical to near-infrared wavelengths in the Subaru/XMM-Newton Deep Field. The LBGs are selected by U-V and V-z' colors in one contiguous area of 561 arcmin^2 down to z'=25.5. We study the dependence of the clustering strength on rest-frame UV and optical magnitudes, which can be indicators of star formation rate and stellar mass, respectively. The correlation length is found to be a strong function of both UV and optical magnitudes with brighter galaxies being more clustered than faint ones in both cases. Furthermore, the correlation length is dependent on a combination of UV and optical magnitudes in the sense that galaxies bright in optical magnitude have large correlation lengths irrespective of UV magnitude, while galaxies faint in optical magnitude have correlation lengths decreasing with decreasing UV brightness. These results suggest that galaxies with large stellar masses always belong to massive halos in which they can have various star formation rates, while galaxies with small stellar masses reside in less massive halos only if they have low star formation rates. There appears to be an upper limit to the stellar mass and the star formation rate which is determined by the mass of hosting dark halos.Comment: 16 pages, 15 figures, accepted for publication in Ap

    The Quantum State of an Ideal Propagating Laser Field

    Full text link
    We give a quantum information-theoretic description of an ideal propagating CW laser field and reinterpret typical quantum-optical experiments in light of this. In particular we show that contrary to recent claims [T. Rudolph and B. C. Sanders, Phys. Rev. Lett. 87, 077903 (2001)], a conventional laser can be used for quantum teleportation with continuous variables and for generating continuous-variable entanglement. Optical coherence is not required, but phase coherence is. We also show that coherent states play a priveleged role in the description of laser light.Comment: 4 pages RevTeX, to appear in PRL. For an extended version see quant-ph/011115

    Tailoring teleportation to the quantum alphabet

    Get PDF
    We introduce a refinement of the standard continuous variable teleportation measurement and displacement strategies. This refinement makes use of prior knowledge about the target state and the partial information carried by the classical channel when entanglement is non-maximal. This gives an improvement in the output quality of the protocol. The strategies we introduce could be used in current continuous variable teleportation experiments.Comment: 16 pages, 6 figures, RevTeX, made changes as recommended by referee, other minor textual corrections, resubmitted to Phys. Rev.

    qBitcoin: A Peer-to-Peer Quantum Cash System

    Full text link
    A decentralized online quantum cash system, called qBitcoin, is given. We design the system which has great benefits of quantization in the following sense. Firstly, quantum teleportation technology is used for coin transaction, which prevents from the owner of the coin keeping the original coin data even after sending the coin to another. This was a main problem in a classical circuit and a blockchain was introduced to solve this issue. In qBitcoin, the double-spending problem never happens and its security is guaranteed theoretically by virtue of quantum information theory. Making a block is time consuming and the system of qBitcoin is based on a quantum chain, instead of blocks. Therefore a payment can be completed much faster than Bitcoin. Moreover we employ quantum digital signature so that it naturally inherits properties of peer-to-peer (P2P) cash system as originally proposed in Bitcoin.Comment: 11 pages, 2 figure
    corecore