352 research outputs found
Hyperon mixing and universal many-body repulsion in neutron stars
A multi-pomeron exchange potential (MPP) is proposed as a model for the
universal many-body repulsion in baryonic systems on the basis of the Extended
Soft Core (ESC) bryon-baryon interaction. The strength of MPP is determined by
analyzing the nucleus-nucleus scattering with the G-matrix folding model. The
interaction in channels is shown to reproduce well the experimental
binding energies. The equation of state (EoS) in neutron matter with
hyperon mixing is obtained including the MPP contribution, and mass-radius
relations of neutron stars are derived. It is shown that the maximum mass can
be larger than the observed one even in the case of including
hyperon mixing on the basis of model-parameters determined by terrestrial
experiments
Neutron-star radii based on realistic nuclear interactions
The existence of neutron stars with requires the strong stiffness
of the equation of state (EoS) of neutron-star matter. We introduce a
multi-pomeron exchange potential (MPP) working universally among 3- and
4-baryons to stiffen the EoS. Its strength is restricted by analyzing the
nucleus-nucleus scattering with the G-matrix folding model. The EoSs are
derived using the Brueckner-Hartree-Fock (BHF) and the cluster variational
method (CVM) with the nuclear interactions ESC and AV18. The mass-radius
relations are derived by solving the Tolmann-Oppenheimer-Volkoff (TOV)
equation, where the maximum masses over are obtained on the basis of
the terrestrial data. Neutron-star radii at a typical mass are
predicted to be km. The uncertainty of calculated radii is
mainly from the ratio of 3- and 4-pomeron coupling constants, which cannot be
fixed by any terrestrial experiment. Though values of are not
influenced by hyperon-mixing effects, finely-observed values for them indicate
degrees of EoS softening by hyperon mixing in the region of
. If is less than about 12.4 km, the
softening of EoS by hyperon mixing has to be weak. Useful information can be
expected by the space mission NICER offering precise measurements for
neutron-star radii within .Comment: 8 pages, 7 figure
Global optical potential for nucleus-nucleus systems from 50 MeV/u to 400 MeV/u
We present a new global optical potential (GOP) for nucleus-nucleus systems,
including neutron-rich and proton-rich isotopes, in the energy range of MeV/u. The GOP is derived from the microscopic folding model with the
complex -matrix interaction CEG07 and the global density presented by S{\~
a}o Paulo group. The folding model well accounts for realistic complex optical
potentials of nucleus-nucleus systems and reproduces the existing elastic
scattering data for stable heavy-ion projectiles at incident energies above 50
MeV/u. We then calculate the folding-model potentials (FMPs) for projectiles of
even-even isotopes, C, O, Ne, Mg,
Si, S, Ar, and Ca, scattered by stable
target nuclei of C, O, Si, Ca Ni, Zr,
Sn, and Pb at the incident energy of 50, 60, 70, 80, 100, 120,
140, 160, 180, 200, 250, 300, 350, and 400 MeV/u. The calculated FMP is
represented, with a sufficient accuracy, by a linear combination of 10-range
Gaussian functions. The expansion coefficients depend on the incident energy,
the projectile and target mass numbers and the projectile atomic number, while
the range parameters are taken to depend only on the projectile and target mass
numbers. The adequate mass region of the present GOP by the global density is
inspected in comparison with FMP by realistic density. The full set of the
range parameters and the coefficients for all the projectile-target
combinations at each incident energy are provided on a permanent open-access
website together with a Fortran program for calculating the microscopic-basis
GOP (MGOP) for a desired projectile nucleus by the spline interpolation over
the incident energy and the target mass number.Comment: 25 pages, 13 figure
- β¦