10,879 research outputs found

    Strain sensing based on radiative emission-absorption mechanism using dye-doped polymer optical fiber

    Get PDF
    A stress sensor based on a dye-doped polymeric optical fiber is able to detect stress by simple comparison of two luminescence peaks from a pair of energy transfer organic dyes. Coumarin 540A (donor) and Rhodamine 6G (acceptor) were doped in the core and cladding of the fiber, respectively. For various laser wavelengths, the change in the near-field pattern and visible emission spectrum upon variation in the fiber bending diameter was evaluated. From a comparison with a low-numerical-aperture fiber, it is shown that the sensitivity of the sensor is controllable by optimization of the waveguide parameters

    Skylab IMSS checklist application study for emergency medical care

    Get PDF
    A manual is presented that provides basic technical documentation to support the operation and utilization of the Portable Ambulance Module (PAM) in the field. The PAM is designed to be used for emergency resuscitation and victim monitoring. The functions of all the controls, displays, and stowed equipment of the unit are defined. Supportive medical and physiological data in those areas directly related to the uses of the PAM unit are presented

    A Monte Carlo Method for Fermion Systems Coupled with Classical Degrees of Freedom

    Full text link
    A new Monte Carlo method is proposed for fermion systems interacting with classical degrees of freedom. To obtain a weight for each Monte Carlo sample with a fixed configuration of classical variables, the moment expansion of the density of states by Chebyshev polynomials is applied instead of the direct diagonalization of the fermion Hamiltonian. This reduces a cpu time to scale as O(Ndim2logNdim)O(N_{\rm dim}^{2} \log N_{\rm dim}) compared to O(Ndim3)O(N_{\rm dim}^{3}) for the diagonalization in the conventional technique; NdimN_{\rm dim} is the dimension of the Hamiltonian. Another advantage of this method is that parallel computation with high efficiency is possible. These significantly save total cpu times of Monte Carlo calculations because the calculation of a Monte Carlo weight is the bottleneck part. The method is applied to the double-exchange model as an example. The benchmark results show that it is possible to make a systematic investigation using a system-size scaling even in three dimensions within a realistic cpu timescale.Comment: 6 pages including 4 figure

    Strong coupling theory of the spinless charges on the triangular lattices: possibility of a new quantum liquid

    Full text link
    We propose a new type of charge liquid state in the spinless fermion system on a triangular lattice under strong inter-site Coulomb interactions, VV. In the strong coupling limit (t=0t=0), the ground state is classical and disordered due to geometrical frustration. The introduction of small t will drive the system to a partially ordered phase which we call a "pinball liquid". A possibly long range ordered Wigner crystal solid coexist with a liquid component which are moving around them like a pinball. This liquid is dominant over wide range of filling, even away from the regular triangle, and is also realized in the hard core boson systems. Relevance to the organic theta-ET_2X is discsussed.Comment: 4pages, 7figure

    Spin Dynamics of Double-Exchange Manganites with Magnetic Frustration

    Full text link
    This work examines the effects of magnetic frustration due to competing ferromagnetic and antiferromagnetic Heisenberg interactions on the spin dynamics of the double-exchange model. When the local moments are non-colinear, a charge-density wave forms because the electrons prefer to sit on lines of sites that are coupled ferromagnetically. With increasing hopping energy, the local spins become aligned and the average spin-wave stiffness increases. Phase separation is found only within a narrow range of hopping energies. Results of this work are applied to the field-induced jump in the spin-wave stiffness observed in the manganite Pr1x_{1-x}Cax_xMnO3_3 with 0.3x0.40.3 \le x \le 0.4.Comment: 10 pages, 3 figure

    Ferroelectricity induced by spin-dependent metal-ligand hybridization in Ba2_2CoGe2_2O7_7

    Full text link
    We have investigated the variation of induced ferroelectric polarization under magnetic field with various directions and magnitudes in a staggered antiferromagnet Ba2_2CoGe2_2O7_7. While the ferroelectric polarization cannot be explained by the well-accepted spin current model nor exchange striction mechanism, we have shown that it is induced by the spin-dependent pp-dd hybridization between the transition-metal (Co) and ligand (O) via the spin-orbit interaction. On the basis of the correspondence between the direction of electric polarization and the magnetic state, we have also demonstrated the electrical control of the magnetization direction.Comment: 4 pages, 4 figure
    corecore