8 research outputs found

    Treating patients in a trauma room equipped with computed tomography and patients’ mortality: a non-controlled comparison study

    No full text
    Abstract Background To improve acute trauma care workflow, the number of trauma centers equipped with a computed tomography (CT) machine in the trauma resuscitation room has increased. The effect of the presence of a CT machine in the trauma room on a patient’s outcome is still unclear. This study evaluated the association between a CT machine in the trauma room and a patient’s outcome. Methods Our study included all trauma patients admitted to a trauma center in Yokohama, Japan, between April 2014 and March 2016. We compared 140 patients treated using a conventional resuscitation room with 106 patients treated in new trauma rooms equipped with a CT machine. Results For the group treated in a trauma room with a CT machine, the Injury Severity Score (13.0 vs. 9.0; p = 0.002), CT scans of the head (78.3 vs. 66.4%; p = 0.046), CT scans of the body trunk (75.5 vs. 58.6%; p = 0.007), intubation in the emergency department (48.1 vs. 30.7%; p = 0.008), and multiple trauma patients (47.2 vs. 30.0%; p = 0.008) were significantly higher and Trauma and Injury Severity Score probability of survival (96.75 vs. 97.80; p = 0.009) was significantly lower than the group treated in a conventional resuscitation room. In multivariate analysis and propensity score matched analysis, being treated in a trauma room with a CT machine was an independent predictor for fewer hospital deaths (odds ratio 0.002; 95% CI 0.00–0.75; p = 0.04, and 0.07; 0.00–0.98, respectively). Conclusions Equipping a trauma room with a CT machine reduced the time in decision-making for treating a trauma patient and subsequently lowered the mortality of trauma patients

    High D-dimer levels predict a poor outcome in patients with severe trauma, even with high fibrinogen levels on arrival : a multicenter retrospective study

    Get PDF
    Elevated D-dimer level in trauma patients is associated with tissue damage severity and is an indicator of hyperfibrinolysis during the early phase of trauma. To investigate the interacting effects of fibrinogen and D-dimer levels on arrival at the emergency department for massive transfusion and mortality in severe trauma patients in a multicentre retrospective study. This study included 519 adult trauma patients with an injury severity score ≥16. Patients with ≥10 units of red cell concentrate transfusion and/or death during the first 24 hours were classified as having a poor outcome. Receiver operating characteristic curve analysis for predicting poor outcome showed the optimal cut-off fibrinogen and D-dimer values to be 190 mg/dL and 38 mg/L, respectively. Based on these values, patients were divided into four groups: (1) low D-dimer (190 mg/dL), (2) low D-dimer (190 mg/dL), and (4) high D-dimer (≥38 mg/L)/low fibrinogen (≤190 mg/dL). The survival rate was lower in the high D-dimer/low fibrinogen group than in the other groups. Moreover, the survival rate was lower in the high D-dimer/high fibrinogen group than in the low D-dimer/high fibrinogen and low D-dimer/low fibrinogen groups. High D-dimer level on arrival is a strong predictor of early death or requirement for massive transfusion in severe trauma patients, even with high fibrinogen levels

    Hyperfibrinolysis in severe isolated traumatic brain injury may occur without tissue hypoperfusion : a retrospective observational multicentre study

    Get PDF
    Background: Hyperfibrinolysis is a critical complication in severe trauma. Hyperfibrinolysis is traditionally diagnosed via elevated D-dimer or fibrin/fibrinogen degradation product levels, and recently, using thromboelastometry. Although hyperfibrinolysis is observed in patients with severe isolated traumatic brain injury (TBI) on arrival at the emergency department (ED), it is unclear which factors induce hyperfibrinolysis. The present study aimed to investigate the factors associated with hyperfibrinolysis in patients with isolated severe TBI. Methods: We conducted a multicentre retrospective review of data for adult trauma patients with an injury severity score >= 16, and selected patients with isolated TBI (TBI group) and extra-cranial trauma (non-TBI group). The TBI group included patients with an abbreviated injury score (AIS) for the head >= 4 and an extra-cranial AIS = 3 and head AIS = 38 mg/L on arrival at the ED. We evaluated the relationships between hyperfibrinolysis and injury severity/tissue injury/tissue perfusion in TBI patients by comparing them with non-TBI patients. Results: We enrolled 111 patients in the TBI group and 126 in the non-TBI group. In both groups, patients with hyperfibrinolysis had more severe injuries and received transfusion more frequently than patients without hyperfibrinolysis. Tissue injury, evaluated on the basis of lactate dehydrogenase and creatine kinase levels, was associated with hyperfibrinolysis in both groups. Among patients with TBI, the mortality rate was higher in those with hyperfibrinolysis than in those without hyperfibrinolysis. Tissue hypoperfusion, evaluated on the basis of lactate level, was associated with hyperfibrinolysis in only the non-TBI group. Although the increase in lactate level was correlated with the deterioration of coagulofibrinolytic variables (prolonged prothrombin time and activated partial thromboplastin time, decreased fibrinogen levels, and increased D-dimer levels) in the non-TBI group, no such correlation was observed in the TBI group. Conclusions: Hyperfibrinolysis is associated with tissue injury and trauma severity in TBI and non-TBI patients. However, tissue hypoperfusion is associated with hyperfibrinolysis in non-TBI patients, but not in TBI patients. Tissue hypoperfusion may not be a prerequisite for the occurrence of hyperfibrinolysis in patients with isolated TBI
    corecore