42 research outputs found

    Visualizing spatially correlated dynamics that directs RNA conformational transitions

    Full text link
    RNAs fold into three- dimensional ( 3D) structures that subsequently undergo large, functionally important, conformational transitions in response to a variety of cellular signals(1-3). RNA structures are believed to encode spatially tuned flexibility that can direct transitions along specific conformational pathways(4,5). However, this hypothesis has proved difficult to examine directly because atomic movements in complex biomolecules cannot be visualized in 3D by using current experimental methods. Here we report the successful implementation of a strategy using NMR that has allowed us to visualize, with complete 3D rotational sensitivity, the dynamics between two RNA helices that are linked by a functionally important trinucleotide bulge over timescales extending up to milliseconds. The key to our approach is to anchor NMR frames of reference onto each helix and thereby directly measure their dynamics, one relative to the other, using 'relativistic' sets of residual dipolar couplings ( RDCs)(6,7). Using this approach, we uncovered super- large amplitude helix motions that trace out a surprisingly structured and spatially correlated 3D dynamic trajectory. The two helices twist around their individual axes by approximately 536 and 1106 in a highly correlated manner ( R = 0.97) while simultaneously ( R = 0.81 - 0.92) bending by about 94 degrees. Remarkably, the 3D dynamic trajectory is dotted at various positions by seven distinct ligand- bound conformations of the RNA. Thus even partly unstructured RNAs can undergo structured dynamics that directs ligand- induced transitions along specific predefined conformational pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62506/1/nature06389.pd

    Time-resolved NMR methods resolving ligand-induced RNA folding at atomic resolution

    No full text
    Structural transitions of RNA between alternate conformations with similar stabilities are associated with important aspects of cellular function. Few techniques presently exist that are capable of monitoring such transitions and thereby provide insight into RNA dynamics and function at atomic resolution. Riboswitches are found in the 5′-UTR of mRNA and control gene expression through structural transitions after ligand recognition. A time-resolved NMR strategy was established in conjunction with laser-triggered release of the ligand from a photocaged derivative in situ to monitor the hypoxanthine-induced folding of the guanine-sensing riboswitch aptamer domain of the Bacillus subtilis xpt-pbuX operon at atomic resolution. Combining selective isotope labeling of the RNA with NMR filter techniques resulted in significant spectral resolution and allowed kinetic analysis of the buildup rates for individual nucleotides in real time. Three distinct kinetic steps associated with the ligand-induced folding were delineated. After initial complex encounter the ligand-binding pocket is formed and results in subsequent stabilization of a remote long-range loop–loop interaction. Incorporation of NMR data into experimentally restrained molecular dynamics simulations provided insight into the RNA structural ensembles involved during the conformational transition

    Characterizing RNA Dynamics at Atomic Resolution Using Solution-state NMR Spectroscopy

    Get PDF
    Many recently discovered non-coding RNAs do not fold into a single native conformation, but rather, sample many different conformations along their free energy landscape to carry out their biological function. Unprecedented insights into the RNA dynamic structure landscape are provided by solution-state NMR techniques that measure the structural, kinetic, and thermodynamic characteristics of motions spanning picosecond to second timescales at atomic resolution. From these studies a basic description of the RNA dynamic structure landscape is emerging, bringing new insights into how RNA structures change to carry out their function as well as applications in RNA-targeted drug discovery and RNA bioengineering

    Time-resolved RNA SHAPE chemistry: quantitative RNA structure analysis in one-second snapshots and at single-nucleotide resolution

    No full text
    RNA SHAPE chemistry exploits the discovery that conformationally dynamic nucleotides preferentially adopt conformations that facilitate reaction between the 2′-OH group and a hydroxyl-selective electrophile, such as benzoyl cyanide (BzCN), to form a 2′-O-adduct. BzCN is ideally suited for quantitative, time-resolved analysis of RNA folding and RNP assembly mechanisms because this reagent both reacts with flexible RNA nucleotides and also undergoes auto-inactivating hydrolysis with a half-life of 0.25 s at 37 °C. RNA folding is initiated by addition of Mg(2+) or protein, or other change in solution conditions, and nucleotide resolution structural images are obtained by adding aliquots of the evolving reaction to BzCN and then “waiting” for 1 sec. Sites of 2′-O-adduct formation are subsequently scored as stops to primer extension using reverse transcriptase. This time resolved SHAPE protocol makes it possible to obtain 1 sec snapshots in time-resolved kinetic studies for RNAs of arbitrary length and complexity in a straightforward and concise experiment
    corecore