8 research outputs found
Spin dynamics in p-doped semiconductor nanostructures subject to a magnetic field tilted from the Voigt geometry
We develop a theoretical description of the spin dynamics of resident holes
in a p-doped semiconductor quantum well (QW) subject to a magnetic field tilted
from the Voigt geometry. We find the expressions for the signals measured in
time-resolved Faraday rotation (TRFR) and resonant spin amplification (RSA)
experiments and study their behavior for a range of system parameters. We find
that an inversion of the RSA peaks can occur for long hole spin dephasing times
and tilted magnetic fields. We verify the validity of our theoretical findings
by performing a series of TRFR and RSA experiments on a p-modulation doped
GaAs/Al_{0.3}Ga_{0.7}As single QW and showing that our model can reproduce
experimentally observed signals.Comment: 9 pages, 3 figures; corrected typo
Decoherence-assisted initialization of a resident hole spin polarization in a two-dimensional hole gas
We investigate spin dynamics of resident holes in a p-modulation-doped
GaAs/AlGaAs single quantum well. Time-resolved Faraday and Kerr
rotation, as well as resonant spin amplification, are utilized in our study. We
observe that nonresonant or high power optical pumping leads to a resident hole
spin polarization with opposite sign with respect to the optically oriented
carriers, while low power resonant optical pumping only leads to a resident
hole spin polarization if a sufficient in-plane magnetic field is applied. The
competition between two different processes of spin orientation strongly
modifies the shape of resonant spin amplification traces. Calculations of the
spin dynamics in the electron--hole system are in good agreement with the
experimental Kerr rotation and resonant spin amplification traces and allow us
to determine the hole spin polarization within the sample after optical
orientation, as well as to extract quantitative information about spin
dephasing processes at various stages of the evolution.Comment: 10 pages, 6 figures; moderate modifications, one new figur
Ultrafast two-dimensional field spectroscopy of terahertz intersubband saturable absorbers
Intersubband (ISB) transitions in semiconductor multi-quantum well (MQW) structures are promising candidates for the development of saturable absorbers at terahertz (THz) frequencies. Here, we exploit amplitude and phase-resolved two-dimensional (2D) THz spectroscopy on the sub-cycle time scale to observe directly the saturation dynamics and coherent control of ISB transitions in a metal-insulator MQW structure. Clear signatures of incoherent pump-probe and coherent four-wave mixing signals are recorded as a function of the peak electric field of the single-cycle THz pulses. All nonlinear signals reach a pronounced maximum for a THz electric field amplitude of 11 kV/cm and decrease for higher fields. We demonstrate that this behavior is a fingerprint of THz-driven carrier-wave Rabi flopping. A numerical solution of the Maxwell-Bloch equations reproduces our experimental findings quantitatively and traces the trajectory of the Bloch vector. This microscopic model allows us to design tailored MQW structures with optimized dynamical properties for saturable absorbers that could be used in future compact semiconductor-based single-cycle THz sources
Spin dynamics in two-dimensional electron and hole systems revealed by resonant spin amplification
Understanding and controlling the spin dynamics in semiconductor heterostructures is a key requirement for the design of future spintronics devices. In GaAs-based heterostructures, electrons and holes have very different spin dynamics. Some control over the spin-orbit fields, which drive the electron spin dynamics, is possible by choosing the crystallographic growth axis. Here, (110)-grown structures are interesting, as the Dresselhaus spinorbit fields are oriented along the growth axis and therefore, the typically dominant Dyakonov-Perel mechanism is suppressed for spins oriented along this axis, leading to long spin depasing times. By contrast, hole spin dephasing is typically very rapid due to the strong spin-orbit interaction of the p-like valence band states. For localized holes, however, most spin dephasing mechanisms are suppressed, and long spin dephasing times may be observed. Here, we present a study of electron and hole spin dynamics in GaAs-AlGaAs-based quantum wells. We apply the resonant spin amplification (RSA) technique, which allows us to extract all relevant spin dynamics parameters, such as g factors and dephasing times with high accuracy. A comparison of the measured RSA traces with the developed theory reveals the anisotropy of the spin dephasing in the (110)-grown two-dimensional electron systems, as well as the complex interplay between electron and hole spin and carrier dynamics in the two-dimensional hole systems