134 research outputs found
Both base excision repair and O-6-methylguanine-DNA methyltransferase protect against methylation-induced colon carcinogenesis
Methylating agents are widely distributed environmental carcinogens. Moreover, they are being used in cancer chemotherapy. The primary target of methylating agents is DNA, and therefore, DNA repair is the first-line barrier in defense against their toxic and carcinogenic effects. Methylating agents induce in the DNA O[superscript 6]-methylguanine (O[superscript 6]MeG) and methylations of the ring nitrogens of purines. The lesions are repaired by O[superscript 6]-methylguanine-DNA methyltransferase (Mgmt) and by enzymes of the base excision repair (BER) pathway, respectively. Whereas O[superscript 6]MeG is well established as a pre-carcinogenic lesion, little is known about the carcinogenic potency of base N-alkylation products such as N3-methyladenine and N3-methylguanine. To determine their role in cancer formation and the role of BER in cancer protection, we checked the response of mice with a targeted gene disruption of Mgmt or N-alkylpurine-DNA glycosylase (Aag) or both Mgmt and Aag, to azoxymethane (AOM)-induced colon carcinogenesis, using non-invasive mini-colonoscopy. We demonstrate that both Mgmt- and Aag-null mice show a higher colon cancer frequency than the wild-type. With a single low dose of AOM (3 mg/kg) Aag-null mice showed an even stronger tumor response than Mgmt-null mice. The data provide evidence that both BER initiated by Aag and O[superscript 6]MeG reversal by Mgmt are required for protection against alkylation-induced colon carcinogenesis. Further, the data indicate that non-repaired N-methylpurines are not only pre-toxic but also pre-carcinogenic DNA lesions.Deutsche Forschungsgemeinschaft (DFG) (FOR 527)Deutsche Forschungsgemeinschaft (DFG) (DFG KA 724/13-3)Deutsche Forschungsgemeinschaft (DFG) (WI 3304/1-1
Circulating endothelial cells in oncology: pitfalls and promises
Adequate blood supply is a prerequisite in the pathogenesis of solid malignancies. As a result, depriving a tumour from its oxygen and nutrients, either by preventing the formation of new vessels, or by disrupting vessels already present in the tumour, appears to be an effective treatment modality in oncology. Given the mechanism by which these agents exert their anti-tumour activity together with the crucial role of tumour vasculature in the pathogenesis of tumours, there is a great need for markers properly reflecting its impact. Circulating endothelial cells (CEC), which are thought to derive from damaged vasculature, may be such a marker. Appropriate enumeration of these cells appears to be a technical challenge. Nevertheless, first studies using validated CEC assays have shown that CEC numbers in patients with advanced malignancies are elevated compared to healthy controls making CEC a potential tool for among other establishing prognosis and therapy-induced effects. In this review, we will address the possible clinical applications of CEC detection in oncology, as well as the pitfalls encountered in this process
The relationship of the neo-angiogenic marker, endoglin, with response to neoadjuvant chemotherapy in breast cancer
Endoglin (CD105) is upregulated in endothelial cells of tissues undergoing neovascularisation. A greater number of CD105-positive vessels predicts poor survival in breast cancer. We examine whether CD105 expression predicts response to neoadjuvant chemotherapy. Fifty-seven women (median age 50 years, range 29β70) received neoadjuvant chemotherapy for operable breast cancer. Immunohistochemical staining using monoclonal antibodies to CD105 and CD34 was performed on pretreatment biopsies and post-treatment surgical specimens. Individual microvessels were counted in 10 random fields at Γ 200 magnification. Median counts were correlated with clinical and pathological response using the MannβWhitney U-test. Forty-five out of fifty-seven patients (79%) responded clinically, 22 (39%) responded pathologically. On pretreatment biopsies, clinical responders had significantly lower median CD105-positive vessel counts than nonresponders (median counts 5 and 9.3/high-power field (hpf), median difference=4.0/hpf, 95% CI 0.5β8.0/hpf, P=0.02). For pathological responders and nonresponders, median counts were 4.8 and 5.5/hpf (median difference β0.5/hpf, 95% CI=β2.5β2.0/hpf, P=0.77). CD34 expression (total microvessel density) did not correlate with response. Pretreatment CD105 expression predicts for clinical response to chemotherapy, with a lower initial count being favourable. Patients with high baseline new vessel counts or increased counts after conventional therapy may benefit from additional antiangiogenic therapy
Preoperative bevacizumab combined with letrozole and chemotherapy in locally advanced ER- and/or PgR-positive breast cancer: clinical and biological activity
The antiangiogenic agent bevacizumab showed synergistic effects when combined with chemotherapy in advanced breast cancer. We presently investigated the activity of bevacizumab in combination with chemotherapy, including capecitabine and vinorelbine, and endocrine therapy, including letrozole (+triptorelin in premenopausal women), as primary therapy for patients with ER and/or PgR β©Ύ10% T2βT4a-c, N0βN2, M0 breast cancer. Biological end point included the proliferative activity (Ki67), whereas clinical end points were clinical response rate, pathological complete response (pCR) and tolerability. Circulating endothelial cells (CECs) and their progenitors, as surrogate markers of antiangiogenic activity, were measured at baseline and at surgery.Thirty-six women are evaluable. A clinical response rate of 86% (95% CI, 70β95) and no pCR were observed; Ki67 was significantly decreased by 71% (interquartile range, β82%, β62%). Toxicity was manageable: two grade 3 hypertension, four grade 3 deep venous thrombosis and no grade >2 proteinuria were observed. Treatment significantly decreased the percentage of viable CECs and prevented the chemotherapy-induced mobilisation of circulating progenitors. Basal circulating progenitors were positively associated with clinical response. In conclusion, bevacizumab is feasible and active in association with primary chemoendocrine therapy for ER-positive tumours in terms of proliferation inhibition, clinical response and antiangiogenic activity
Analysis of circulating hem-endothelial marker RNA levels in preterm infants
<p>Abstract</p> <p>Background</p> <p>Circulating endothelial cells may serve as novel markers of angiogenesis. These include a subset of hem-endothelial progenitor cells that play a vital role in vascular growth and repair. The presence and clinical implications of circulating RNA levels as an expression for hematopoietic and endothelial-specific markers have not been previously evaluated in preterm infants. This study aims to determine circulating RNA levels of hem-endothelial marker genes in peripheral blood of preterm infants and begin to correlate these findings with prenatal complications.</p> <p>Methods</p> <p>Peripheral blood samples from seventeen preterm neonates were analyzed at three consecutive post-delivery time points (day 3β5, 10β15 and 30). Using quantitative reverse transcription-polymerase chain reaction we studied the expression patterns of previously established hem-endothelial-specific progenitor-associated genes (<it>AC133, Tie-2, Flk-1 (VEGFR2) and Scl/Tal1</it>) in association with characteristics of prematurity and preterm morbidity.</p> <p>Results</p> <p>Circulating <it>Tie-2 </it>and <it>SCL/Tal1 </it>RNA levels displayed an inverse correlation to gestational age (GA). We observed significantly elevated <it>Tie-2 </it>levels in preterm infants born to mothers with amnionitis, and in infants with sustained brain echogenicity on brain sonography. Other markers showed similar expression patterns yet we could not demonstrate statistically significant correlations.</p> <p>Conclusion</p> <p>These preliminary findings suggest that circulating RNA levels especially <it>Tie2 </it>and <it>SCL </it>decline with maturation and might relate to some preterm complication. Further prospective follow up of larger cohorts are required to establish this association.</p
t10c12 Conjugated Linoleic Acid Suppresses HER2 Protein and Enhances Apoptosis in SKBr3 Breast Cancer Cells: Possible Role of COX2
BACKGROUND: HER2-targeted therapy with the monoclonal antibody trastuzumab (Herceptin) has improved disease-free survival for women diagnosed with HER2-positive breast cancers; however, treatment resistance and disease progression are not uncommon. Current data suggest that resistance to treatment in HER2 cancers may be a consequence of NF-kappaB overexpression and increased COX2-derived prostaglandin E2 (PGE(2)). Conjugated linoleic acid (CLA) has been shown to have anti-tumor properties and to inhibit NF-kappaB activity and COX2. METHODS: In this study, HER2-overexpressing SKBr3 breast cancer cells were treated with t10c12 CLA. Protein expression of the HER2 receptor, nuclear NF-kappaB p65, and total and phosphorylated IkappaB were examined by western blot and immunofluorescence. PGE(2) levels were determined by ELISA. Proliferation was measured by metabolism of 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), and apoptosis was measured by FITC-conjugated Annexin V staining and flow cytometry. RESULTS/CONCLUSIONS: We observed a significant decrease in HER2 protein expression on western blot following treatment with 40 and 80 microM t10c12 CLA (p<0.01 and 0.001, respectively) and loss of HER2 protein in cells using immunoflourescence that was most pronounced at 80 microM. Protein levels of nuclear NF-kappaB p65 were also significantly reduced at the 80 microM dose. This was accompanied by a significant decrease in PGE(2) levels (p = 0.05). Pretreatment with t10c12 CLA significantly enhanced TNFalpha-induced apoptosis and the anti-proliferative action of trastuzumab (p = 0.05 and 0.001, respectively). These data add to previous reports of an anti-tumor effect of t10c12 CLA and suggest an effect on the HER2 oncogene that may be through CLA mediated downregulation of COX2-derived PGE(2)
Biomarkers of angiogenesis and their role in the development of VEGF inhibitors
Vascular endothelial growth factor (VEGF) has been confirmed as an important therapeutic target in randomised clinical trials in multiple disease settings. However, the extent to which individual patients benefit from VEGF inhibitors is unclear. If we are to optimise the use of these drugs or develop combination regimens that build on this efficacy, it is critical to identify those patients who are likely to benefit, particularly as these agents can be toxic and are expensive. To this end, biomarkers have been evaluated in tissue, in circulation and by imaging. Consistent drug-induced increases in plasma VEGF-A and blood pressure, as well as reductions in soluble VEGF-R2 and dynamic contrast-enhanced MRI parameters have been reported. In some clinical trials, biomarker changes were statistically significant and associated with clinical end points, but there is considerable heterogeneity between studies that are to some extent attributable to methodological issues. On the basis of observations with these biomarkers, it is now appropriate to conduct detailed prospective studies to define a suite of predictive, pharmacodynamic and surrogate response biomarkers that identify those patients most likely to benefit from and monitor their response to this novel class of drugs
Systemic administration of IGF-I enhances healing in collagenous extracellular matrices: evaluation of loaded and unloaded ligaments
BACKGROUND: Insulin-like growth factor-I (IGF-I) plays a crucial role in wound healing and tissue repair. We tested the hypotheses that systemic administration of IGF-I, or growth hormone (GH), or both (GH+IGF-I) would improve healing in collagenous connective tissue, such as ligament. These hypotheses were examined in rats that were allowed unrestricted activity after injury and in animals that were subjected to hindlimb disuse. Male rats were assigned to three groups: ambulatory sham-control, ambulatory-healing, and hindlimb unloaded-healing. Ambulatory and hindlimb unloaded animals underwent surgical disruption of their knee medial collateral ligaments (MCLs), while sham surgeries were performed on control animals. Healing animals subcutaneously received systemic doses of either saline, GH, IGF-I, or GH+IGF-I. After 3 weeks, mechanical properties, cell and matrix morphology, and biochemical composition were examined in control and healing ligaments. RESULTS: Tissues from ambulatory animals receiving only saline had significantly greater strength than tissue from saline receiving hindlimb unloaded animals. Addition of IGF-I significantly improved maximum force and ultimate stress in tissues from both ambulatory and hindlimb unloaded animals with significant increases in matrix organization and type-I collagen expression. Addition of GH alone did not have a significant effect on either group, while addition of GH+IGF-I significantly improved force, stress, and modulus values in MCLs from hindlimb unloaded animals. Force, stress, and modulus values in tissues from hindlimb unloaded animals receiving IGF-I or GH+IGF-I exceeded (or were equivalent to) values in tissues from ambulatory animals receiving only saline with greatly improved structural organization and significantly increased type-I collagen expression. Furthermore, levels of IGF-receptor were significantly increased in tissues from hindlimb unloaded animals treated with IGF-I. CONCLUSION: These results support two of our hypotheses that systemic administration of IGF-I or GH+IGF-I improve healing in collagenous tissue. Systemic administration of IGF-I improves healing in collagenous extracellular matrices from loaded and unloaded tissues. Growth hormone alone did not result in any significant improvement contrary to our hypothesis, while GH + IGF-I produced remarkable improvement in hindlimb unloaded animals
- β¦