31 research outputs found

    Flame front propagation IV: Random Noise and Pole-Dynamics in Unstable Front Propagation II

    Full text link
    The current paper is a corrected version of our previous paper arXiv:adap-org/9608001. Similarly to previous version we investigate the problem of flame propagation. This problem is studied as an example of unstable fronts that wrinkle on many scales. The analytic tool of pole expansion in the complex plane is employed to address the interaction of the unstable growth process with random initial conditions and perturbations. We argue that the effect of random noise is immense and that it can never be neglected in sufficiently large systems. We present simulations that lead to scaling laws for the velocity and acceleration of the front as a function of the system size and the level of noise, and analytic arguments that explain these results in terms of the noisy pole dynamics.This version corrects some very critical errors made in arXiv:adap-org/9608001 and makes more detailed description of excess number of poles in system, number of poles that appear in the system in unit of time, life time of pole. It allows us to understand more correctly dependence of the system parameters on noise than in arXiv:adap-org/9608001Comment: 23 pages, 4 figures,revised, version accepted for publication in journal "Combustion, Explosion and Shock Waves". arXiv admin note: substantial text overlap with arXiv:nlin/0302021, arXiv:adap-org/9608001, arXiv:nlin/030201

    Effect of lethal yellow (AY) mutation and photoperiod alterations on mouse behavior

    Get PDF
    Decrease in natural illumination in fall/winter months causes depressive-like seasonal affective disorders in vulnerable individuals. Obesity is another risk factor of depression. The lethal yellow (AY) mutation causes ectopic expression of agouti protein in the brain. Mice heterozygous for AY mutation (AY/a) are obese compared to their wild-type littermates (a/a). The main aims of the study were to investigate the effects of AY mutation, photoperiod and the interaction between these factors on daily activity dynamics, feeding, locomotor and exploratory activities, anxiety-related and depressive-like behaviors in mild stress condition. Six weeks old mouse males of AY/a and a/a lines were divided into four groups eight animals each and exposed to long- (14 h light and 10 h darkness) or short- (4 h light and 20 h darkness) day conditions for 28 days. Then the behavior of these mice was successively investigated in the home cage, open field, elevated plus-maze and forced swim tests. We did not observed any effect of AY mutation on the general activity, water and food consumption in the home cage; locomotion and exploration in the open field test; anxiety-related behavior in the open field and elevated plus-maze tests. At the same time, AY mutation increased depressive-like immobility time in the forced swim test (F1.28 = 20.03, p = 0.00012). Shortday conditions decreased nocturnal activity in the home cage, as well as locomotion (F1.28 = 16.33, p = 0.0004) and exploration (F1.28 = 16.24, p < 0.0004) in the open field test. Moreover, short-day exposition decreased time spent in the center of the open field (F1.28 = 6.57, p = 0.016) and in the open arms of the elevated plus-maze (F1.28 = 12.08, p = 0.0017) tests and increased immobility time in the forced swim test (F1.28 = 9.95, p = 0.0038). However, no effect of the interaction between AY mutation and photoperiod on immobility time in the forced swim test was observed. Therefore, short-day photoperiod and AY mutation increased depressive-like behavior in the forced swim test by means of different mechanisms

    The ‘Incredible Wrongness’ of Nikita Khrushchev:he CIA and the Cuban Missile Crisis

    No full text
    corecore