1,829 research outputs found
Isotope effect on superconductivity in Josephson coupled stripes in underdoped cuprates
Inelastic neutron scattering data for YBaCuO as well as for LaSrCuO indicate
incommensurate neutron scattering peaks with incommensuration  away
from the  point.  can be replotted as a linear function of
the incommensuration for these materials. This linear relation implies that the
constant that relates these two quantities, one being the incommensuration
(momentum) and another being  (energy), has the dimension of velocity
we denote : . We argue that this
experimentally derived relation can be obtained in a simple model of Josephson
coupled stripes. Within this framework we address the role of the  isotope effect on the . We assume that the incommensuration is
set by the {\em doping} of the sample and is not sensitive to the oxygen
isotope given the fixed doping. We find therefore that the only parameter that
can change with O isotope substitution in the relation 
is the velocity . We predict an oxygen isotope effect on  and expect
it to be .Comment: 4 pages latex file, 2 eps fig
Quantum statistics of interacting dimer spin systems
The compound TlCuCl3 represents a model system of dimerized quantum spins with strong interdimer interactions. We investigate the triplet dispersion as a function of temperature by inelastic neutron scattering experiments on single crystals. By comparison with a number of theoretical approaches we demonstrate that the description of Troyer, Tsunetsugu, and Wurtz [Phys. Rev. B 50, 13 515 (1994)] provides an appropriate quantum statistical model for dimer spin systems at finite temperatures, where many-body correlations become particularly important
Evidence for complex order parameter in La_{1.83}Sr_{0.17}CuO_4
The in-plane magnetic field penetration depth (\lambda_{ab}) in
single-crystal La_{1.83}Sr_{0.17}CuO_4 was investigated by means of the
muon-spin rotation (\muSR) technique. The temperature dependence of
\lambda^{-2}_{ab} has an inflection point around 10-15K, suggesting the
presence of two superconducting gaps: a large gap (\Delta_1^d) with d-wave and
a small gap (\Delta_2^s) with s-wave symmetry. The zero-temperature values of
the gaps at \mu_0H=0.02T were found to be \Delta_1^d(0)=8.2(2)meV and
\Delta_2^s(0)=1.57(8)meV.Comment: 5 pages, 3 figure
Q-dependence of the inelastic neutron scattering cross section for molecular spin clusters with high molecular symmetry
For powder samples of polynuclear metal complexes the dependence of the
inelastic neutron scattering intensity on the momentum transfer Q is known to
be described by a combination of so called interference terms. They reflect the
interplay between the geometrical structure of the compound and the spatial
properties of the wave functions involved in the transition. In this work, it
is shown that the Q-dependence is strongly interrelated with the molecular
symmetry of molecular nanomagnets, and, if the molecular symmetry is high
enough, is actually completely determined by it. A general formalism connecting
spatial symmetry and interference terms is developed. The arguments are
detailed for cyclic spin clusters, as experimentally realized by e.g. the
octanuclear molecular wheel Cr8, and the star like tetranuclear cluster Fe4.Comment: 8 pages, 1 figures, REVTEX
Quantum Statistics of Interacting Dimer Spin Systems
The compound TlCuCl3 represents a model system of dimerized quantum spins
with strong interdimer interactions. We investigate the triplet dispersion as a
function of temperature by inelastic neutron scattering experiments on single
crystals. By comparison with a number of theoretical approaches we demonstrate
that the description of Troyer, Tsunetsugu, and Wuertz [Phys. Rev. B 50, 13515
(1994)] provides an appropriate quantum statistical model for dimer spin
systems at finite temperatures, where many-body correlations become
particularly important.Comment: 4 pages, 4 figures, to appear in Physical Review Letter
A framework for innovative service design
Drawing on research from design science, marketing and service science, our paper provides an integrated framework for evaluating and directing innovative service design. The main goal of our review is to highlight the strengths of existing frameworks and to suggest how they can be enhanced in combination with design science principles. Based on our review, we propose a new framework for the design of innovative services that integrates several key paradigmatic approaches and identifies fundamental open research questions. Our approach is unique as it combines three service disciplines, namely services marketing, service science, and design science, and provides a new framework that describes step by step the procedure that needs to be taken and the conditions that need to be met for developing innovative services. We believe that providing such a framework is a valuable addition to the literature
Universal observation of multiple order parameters in cuprate superconductors
The temperature dependence of the London penetration depth \lambda was
measured for an untwined single crystal of YBa_2Cu_3O_{7-\delta} along the
three principal crystallographic directions (a, b, and c). Both in-plane
components (\lambda_a and \lambda_b) show an inflection point in their
temperature dependence which is absent in the component along the c-direction
(\lambda_c). The data provide convincing evidence that the in-plane
superconducting order parameter is a mixture of s+d-wave symmetry whereas it is
exclusively s-wave along the c-direction. In conjunction with previous results
it is concluded that coupled s+d-order parameters are universal and intrinsic
to cuprate superconductors.Comment: 5 pages, 3 figure
- …
