6 research outputs found

    Evaluasi Neraca Massa Kolom Deethanizer di Unit Gas Plant

    Get PDF
    Gas Plant Unit in company X engaged in energy in Balikpapan has a design capacity of 560 tons/day. This unit serves to produce propane gas (C3H8) and butane (C4H10) to become LPG products. The Deethanizer column is a Light End fractionation unit that separates Ethane compounds from Propane and Butane at operating temperature resulting in LPG products that meet the specifications. The researcher's goal is to obtain the actual mass balance calculation and the flow rate of the process—the method used from retrieving data on operating conditions directly to the industry and performing calculations. The Deetanizer column is composed of 40 sieve trays, the entry feed of the 20th tray operates at the mass flow rate of the Deethanizer column feed of 5949,184 kg/hour, the flow rate of LPG products is 3428,334 kg/hour, and the mass flow rate of gas overhead is 150,186 kg/hour so that there is an actual % loss of 39,84%, this is because this unit should be time to be repaired. However, this does not affect the products produced, which can be seen from laboratory tests on LPG product samples.ABSTRAKGas Plant Unit diperusahaan X yang bergerak dibidang energi di Balikpapan mempunyai kapasitas desain 560 ton/hari. Unit ini berfungsi untuk memproduksi gas propane (C3H8) dan butana (C4H10) sehingga menjadi produk LPG. Kolom Deethanizer adalah unit fraksinasi Light Ends yang berfungsi untuk memisahkan senyawa Ethana dari Propana dan Butana dengan proses destilasi bertekananan sehingga menghasilkan produk LPG yang memenuhi spesifikasi. Tujuan peneliti untuk mendapatkan perhitungan neraca massa aktual serta laju alir proses. Metode yang digunakan dari pengambilan data kondisi operasi langsung ke industri serta melakukan perhitungan. Kolom Deetanizer tersusun dari 40 buah sieve tray, umpan masuk dari tray ke-20, beroperasi pada laju alir massa umpan kolom Deethanizer sebesar 5949,184 kg/jam, laju alir produk LPG sebesar 3428,334 kg/jam dan laju alir massa overhead gas sebesar 150,186 kg/jam sehingga diperoleh % yield aktual 57.62 dan % losses aktual sebesar 39,84%, hal ini disebabkan karena unit ini seharusnya sudah waktunya untuk di perbaiki. Namun hal ini tidak berpengaruh terhadap produk yang dihasilkan, hal ini dapat dilihat dari hasil uji Laboratorium mengenai Sampel Produk LPG

    Evaluasi Pengaruh Kondisi Operasi Terhadap Kualitas Produk Bawah Kolom Debutanizer

    Get PDF
    The distillation process in the debutanizer column has an essential role in separating the catalytic naphtha product from the light fraction consisting of C3 and C4 hydrocarbon components, both saturated and unsaturated. The naphtha catalytic product is used to blend gasoline because it has a high octane number. The distillation process in the column produces the bottom product of catalytic naphtha and the top product, which is the feed for the stabilizer column. In order to obtain the quantity and quality of catalytic naphtha products, it is necessary to adjust the operating conditions of the debutanizer column properly so that a product that meets the desired specifications is obtained. The method used is the short-cut calculation method which includes the calculation of the material balance and the determination of the condition of the incoming feed. Data collection is obtained from data in the industry. After calculating the material balance of the debutanizer column, the composition of the hydrocarbon constituents of the feed, the top product, and the bottom product can be seen. From the composition data, it can be seen the relationship between operating conditions and the quality of the resulting product. The higher the column operating pressure, the lighter components will be affected, increasing the C4 minus content carried to the bottom product. The higher the C4 minus content, the higher the octane number of catalytic naphtha, but this also affects the Reid Vapor Pressure (RVP) of catalytic naphtha, which also increases. Setting the operating pressure of the column should still pay attention to the product RVP limits, so that product specifications are fulfilled.ABSTRAKProses distilasi pada kolom debutanizer memiliki peran yang penting untuk memisahkan produk catalytic naphta dari fraksi ringan yang terdiri atas komponen hidrokarbon C3 dan C4, baik jenuh maupun tak jenuh. Produk catalytic naphta tersebut digunakan sebagai komponen blending gasoline karena memiliki angka oktan yang tinggi. Proses distilasi pada kolom tersebut dihasilkan produk bawah catalytic naphta dan produk atasnya yang merupakan umpan bagi kolom stabilizer. Untuk mendapatkan kuantitas dan kualitas produk catalytic naphta, maka diperlukan pengaturan kondisi operasi kolom debutanizer yang tepat sehingga diperoleh produk yang sesuai dengan spesifikasi yang diinginkan. Metode yang digunakan adalah metode perhitungan short-cut yang meliputi perhitungan material balance, dan penentuan kondisi umpan masuk. Pengumpulan data didapatkan dari data di industri. Setelah dilakukan perhitungan material balance kolom debutanizer dapat diketahui komposisi hidrokarbon penyusun umpan, produk atas, dan juga produk bawah. Dari data komposisi tersebut dapat diketahui hubungan antara kondisi operasi terhadap kualitas produk yang dihasilkan. Semakin tinggi tekanan operasi kolom, maka akan mempengaruhi komponen ringan, yakni meningkatkan kandungan C4 minus yang terikut ke produk bawah. Semakin tinggi kandungan C4 minus maka akan meningkatkan angka oktan  dari catalytic naphta, namun hal ini juga berpengaruh pada Reid Vapor Pressure (RVP) catalytic naphta yang juga meningkat. Pengaturan tekanan operasi kolom tersebut hendaknya tetap memperhatikan batasan RVP produk agar spesifikasi produk terpenuhi

    Maksimasi Produk Avtur Dengan Pengaturan Cutting Point Di Kolom Fraksinasi Unit Hydrocracking Complex

    Get PDF
    Fractionator in the HCC Unit, is a type of atmospheric distillation process that processes types of oil from various sources such as HVGO and HCGO at the HCC Unit to obtain products in the form of LPG, light naphtha, heavy naphtha, Light Kerosene, Heavy Kerosene, diesel and Net Bottom Fractionation. Changes in Cutting Point on Heavy Kerosene products will have an impact on changes in Heavy Kerosene yield and operating conditions on the fractionation column, namely the Heavy Kerosene draw tray. A decrease in the Cutting Point between Heavy Kerosene and Diesel by 5 °F can increase the yield of Heavy Kerosene products to reach 0.78% volume on crude or 1.57 m³/hour. That is, the temperature of the Heavy Kerosene draw tray is 224°C. This is done in order to reduce the cutting point temperature of Heavy Kerosene which can increase the yield of Heavy Kerosene products

    Pemanfaatan Sampah Plastik Menjadi Fraksi Naphtha Sebagai Bahan Baku Alternatif Petrokimia

    Get PDF
    Indonesia was producing 64 million ton plastic waste each year. These massive amounts of plastic waste will create negative impacts on an environment such as endangering marine ecosystem with almost 3.2 million ton of plastic waste ends up in the sea each year. To reduce an environmental damage caused by plastics waste, a solution to properly recycling this waste is needed. This research has created a recycling method that allows the dissolve of polyethylene plastic bonds into hydrocarbon products. In this research, the objective is to get naphtha product carried out in the process named thermal cracking which intends to break down the complex hydrocarbons in plastic into lighter molecules to obtain hydrocarbons range between C5-C11. The process carried out under conditions of 400oC and 4 kg/cm2. The naphtha produced from a thermal cracking process has gone through several reliable standard test methods, such as ASTM D 4052 (Density @15oC), ASTM D 323 (Reid Vapor Pressure), and ASTM D 86 (Atmospherics Distillation). Based on the results, it was found that naphtha product recovered from plastic waste had the same critical parameters with petroleum naphtha, as evidenced by the results of 720 kg/m3 density, 70 kPa RVP, and has boiling range at 52-170oC

    Pemanfaatan Sampah Plastik Menjadi Fraksi Naphtha Sebagai Bahan Baku Alternatif Petrokimia

    Get PDF
    Indonesia was producing 64 million ton plastic waste each year. These massive amounts of plastic waste will create negative impacts on an environment such as endangering marine ecosystem with almost 3.2 million ton of plastic waste ends up in the sea each year. To reduce an environmental damage caused by plastics waste, a solution to properly recycling this waste is needed. This research has created a recycling method that allows the dissolve of polyethylene plastic bonds into hydrocarbon products. In this research, the objective is to get naphtha product carried out in the process named thermal cracking which intends to break down the complex hydrocarbons in plastic into lighter molecules to obtain hydrocarbons range between C5-C11. The process carried out under conditions of 400oC and 4 kg/cm2. The naphtha produced from a thermal cracking process has gone through several reliable standard test methods, such as ASTM D 4052 (Density @15oC), ASTM D 323 (Reid Vapor Pressure), and ASTM D 86 (Atmospherics Distillation). Based on the results, it was found that naphtha product recovered from plastic waste had the same critical parameters with petroleum naphtha, as evidenced by the results of 720 kg/m3 density, 70 kPa RVP, and has boiling range at 52-170oC

    Cooling Tower Performance Efficiency in Water Treatment Unit at PT. X Sukowati

    Get PDF
    PT X Sukowati is one of the oil and gas industries that operates in the upstream sector, precisely in the oil and gas production process. The purpose of the research is to evaluate the efficiency of the Cooling Tower at PT X Sukowati, and whether it is still feasible to use in the process of cooling the engine to the poorboy and compressor. The research method used is qualitative because this method includes observation, literature study, interviews, and field orientation to obtain data related to the efficiency performance process of the Cooling Tower. Then the analysis is carried out by comparing the design data with the operating conditions of the Cooling Tower. The Cooling Tower works using the counter flow principle of water entering the water flow outlet, sprinkled with a nozzle from a sprinkle head that rotates above the PVC filler. The problem that often occurs in the Cooling Tower is the growth of moss in the cooling water pond. This is maintained by giving algae as much as 600 ml per day to the cooling water pond. The average efficiency value obtained at the Cooling Tower is 59.12%. This result shows that the Cooling Tower can still function properly. The efficiency value is better than the design data efficiency of 50%
    corecore