7 research outputs found

    Air and surface sampling for monkeypox virus in a UK hospital: an observational study

    Get PDF
    Background An outbreak of monkeypox virus infections in non-endemic countries was recognised on May 12, 2022. As of September 29, more than 67 000 infections have been reported globally, with more than 3400 confirmed cases in the UK by September 26. Monkeypox virus is believed to be predominantly transmitted through direct contact with lesions or infected body fluids, with possible involvement of fomites and large respiratory droplets. A case of monkeypox in a health-care worker in the UK in 2018 was suspected to be due to virus exposure while changing bedding. We aimed to measure the extent of environmental contamination in the isolation rooms of patients with symptomatic monkeypox. Methods We investigated environmental contamination with monkeypox virus from infected patients admitted to isolation rooms at the Royal Free Hospital (London, UK) between May 24 and June 17, 2022. Surface swabs of high-touch areas in five isolation rooms, of the personal protective equipment (PPE) of health-care workers in doffing areas in three rooms, and from air samples collected before and during bedding changes in five rooms were analysed using quantitative PCR to assess monkeypox virus contamination levels. Virus isolation was performed to confirm presence of infectious virus in selected positive samples. Findings We identified widespread surface contamination (56 [93%] of 60 samples were positive) in occupied patient rooms (monkeypox DNA cycle threshold [Ct] values 24·7–37·4), on health-care worker PPE after use (Ct 26·1–35·6), and in PPE doffing areas (Ct 26·3–36·8). Of 20 air samples taken, five (25%) were positive. Three (75%) of four air samples collected before and during a bedding change in one patient's room were positive (Ct 32·7–36·2). Replication-competent virus was identified in two (50%) of four samples selected for viral isolation, including from air samples collected during bedding change. Interpretation These data show contamination in isolation facilities and potential for suspension of monkeypox virus into the air during specific activities. PPE contamination was observed after clinical contact and changing of bedding. Contamination of hard surfaces in doffing areas supports the importance of cleaning protocols, PPE use, and doffing procedures. Fundin

    Detection of Crimean-Congo Haemorrhagic Fever cases in a severe undifferentiated febrile illness outbreak in the Federal Republic of Sudan: A retrospective epidemiological and diagnostic cohort study

    Get PDF
    BACKGROUND: Undifferentiated febrile illness (UFI) is one of the most common reasons for people seeking healthcare in low-income countries. While illness and death due to specific infections such as malaria are often well-quantified, others are frequently uncounted and their impact underappreciated. A number of high consequence infectious diseases, including Ebola virus, are endemic or epidemic in the Federal Republic of Sudan which has experienced at least 12 UFI outbreaks, frequently associated with haemorrhage and high case fatality rates (CFR), since 2012. One of these occurred in Darfur in 2015/2016 with 594 cases and 108 deaths (CFR 18.2%). The aetiology of these outbreaks remains unknown. METHODOLOGY/PRINCIPAL FINDINGS: We report a retrospective cohort study of the 2015/2016 Darfur outbreak, using a subset of 65 of 263 outbreak samples received by the National Public Health Laboratory which met selection criteria of sufficient sample volume and epidemiological data. Clinical features included fever (95.8%), bleeding (95.7%), headache (51.6%) and arthralgia (42.2%). No epidemiological patterns indicative of person-to-person transmission or health-worker cases were reported. Samples were tested at the Public Health England Rare and Imported Pathogens Laboratory using a bespoke panel of likely pathogens including haemorrhagic fever viruses, arboviruses and Rickettsia, Leptospira and Borrelia spp. Seven (11%) were positive for Crimean-Congo haemorrhagic fever virus (CCHFV) by real-time reverse transcription PCR. The remaining samples tested negative on all assays. CONCLUSIONS/SIGNIFICANCE: CCHFV is an important cause of fever and haemorrhage in Darfur, but not the sole major source of UFI outbreaks in Sudan. Prospective studies are needed to explore other aetiologies, including novel pathogens. The presence of CCHFV has critical infection, prevention and control as well as clinical implications for future response. Our study reinforces the need to boost surveillance, lab and investigative capacity to underpin effective response, and for local and international health security

    Air and surface sampling for monkeypox virus in a UK hospital: an observational study

    No full text
    Background An outbreak of monkeypox virus infections in non-endemic countries was recognised on May 12, 2022. As of September 29, more than 67 000 infections have been reported globally, with more than 3400 confirmed cases in the UK by September 26. Monkeypox virus is believed to be predominantly transmitted through direct contact with lesions or infected body fluids, with possible involvement of fomites and large respiratory droplets. A case of monkeypox in a health-care worker in the UK in 2018 was suspected to be due to virus exposure while changing bedding. We aimed to measure the extent of environmental contamination in the isolation rooms of patients with symptomatic monkeypox. Methods We investigated environmental contamination with monkeypox virus from infected patients admitted to isolation rooms at the Royal Free Hospital (London, UK) between May 24 and June 17, 2022. Surface swabs of high-touch areas in five isolation rooms, of the personal protective equipment (PPE) of health-care workers in doffing areas in three rooms, and from air samples collected before and during bedding changes in five rooms were analysed using quantitative PCR to assess monkeypox virus contamination levels. Virus isolation was performed to confirm presence of infectious virus in selected positive samples. Findings We identified widespread surface contamination (56 [93%] of 60 samples were positive) in occupied patient rooms (monkeypox DNA cycle threshold [Ct] values 24·7–37·4), on health-care worker PPE after use (Ct 26·1–35·6), and in PPE doffing areas (Ct 26·3–36·8). Of 20 air samples taken, five (25%) were positive. Three (75%) of four air samples collected before and during a bedding change in one patient's room were positive (Ct 32·7–36·2). Replication-competent virus was identified in two (50%) of four samples selected for viral isolation, including from air samples collected during bedding change. Interpretation These data show contamination in isolation facilities and potential for suspension of monkeypox virus into the air during specific activities. PPE contamination was observed after clinical contact and changing of bedding. Contamination of hard surfaces in doffing areas supports the importance of cleaning protocols, PPE use, and doffing procedures. Funding None
    corecore