6 research outputs found

    Bi-directional series-parallel elastic actuator and overlap of the actuation layers

    Get PDF
    Several robotics applications require high torque-to-weight ratio and energy efficient actuators. Progress in that direction was made by introducing compliant elements into the actuation. A large variety of actuators were developed such as series elastic actuators (SEAs), variable stiffness actuators and parallel elastic actuators (PEAs). SEAs can reduce the peak power while PEAs can reduce the torque requirement on the motor. Nonetheless, these actuators still cannot meet performances close to humans. To combine both advantages, the series parallel elastic actuator (SPEA) was developed. The principle is inspired from biological muscles. Muscles are composed of motor units, placed in parallel, which are variably recruited as the required effort increases. This biological principle is exploited in the SPEA, where springs (layers), placed in parallel, can be recruited one by one. This recruitment is performed by an intermittent mechanism. This paper presents the development of a SPEA using the MACCEPA principle with a self-closing mechanism. This actuator can deliver a bi-directional output torque, variable stiffness and reduced friction. The load on the motor can also be reduced, leading to a lower power consumption. The variable recruitment of the parallel springs can also be tuned in order to further decrease the consumption of the actuator for a given task. First, an explanation of the concept and a brief description of the prior work done will be given. Next, the design and the model of one of the layers will be presented. The working principle of the full actuator will then be given. At the end of this paper, experiments showing the electric consumption of the actuator will display the advantage of the SPEA over an equivalent stiff actuator

    Minimizing torque requirements in robotic manipulation through elastic elements optimization in a physics engine

    No full text
    The increasing number of robots and the rising cost of electricity have spurred research into energy-reducing concepts in robotics. One such concept, elastic actuation, introduces compliant elements such as springs into the robot structure. This article presents a comparative analysis between two types of elastic actuation, namely, monoarticular parallel elastic actuation and biarticular parallel elastic actuation, and demonstrates an end-to-end pipeline for their optimization. Starting from the real-world system identification of an RRR robotic arm, we calibrate a simulation model in a general-purpose physics engine and employ in silico evolutionary optimization to co-optimize spring configurations and trajectories for a pick-and-place task. Finally, we successfully transfer the in silico optimized elastic elements and trajectory to the real-world prototype. Our results substantiate the ability of elastic actuation to reduce the actuators’ torque requirements heavily. In contrast to previous work, we highlight the superior performance of the biarticular variant over the monoarticular configuration. Furthermore, we show that a combination of both proves most effective. This work provides valuable insights into the torque-reducing use of elastic actuation and demonstrates an actuator-invariant in silico optimization methodology capable of bridging the sim2real gap

    Novel lockable and stackable compliant actuation unit for modular +SPEA actuators

    No full text
    On compliant robotic systems, modularity is recently adopted for the ease of up- and downscaling and the possibility to downgrade the costs, by moving towards the combination of standard units instead of custom designs. However, modularity on the actuator level itself lacks more thorough evaluation. We have developed a novel lockable and stackable compliant actuation unit which can be used to form modular series-parallel elastic actuators (+SPEA). This paper describes the modular +SPEA layer architecture and discusses its two-way overrunner and rubber springs in detail, while providing experimental validation on each component as well. First experiments show the layer can deliver up to 20 Nm. Finally, we present how a manipulator can be equipped with the modular +SPEA layers

    Novel SPECTA Actuator to Improve Energy Recuperation and Efficiency

    No full text
    The current state of the art in compliant actuation has already good performance, but this is still insufficient to provide a decent autonomy for the next generation of robots. In this paper, a next step is taken to improve the efficiency of actuators by tackling and enhancing the Series-Parallel Elastic Constant Torque Actuation (SPECTA) concept, which has previously been analyzed in simulations. In this work, the efficiency is increased further by decoupling the springs and their driving parts through the use of locking mechanisms, such that the motors are not always loaded and the springs can easily store energy from both input or output. Simulations have been performed to confirm this and they also showed that, in the SPECTA concept, it is always better to use high-speed motors instead of high-torque motors, even with non-efficient gearing. In this paper, the SPECTA concept is also validated experimentally with the use of a newly built test setup. In light of the obtained results, showing an increase in efficiency for almost all working points, it can be stated that SPECTA is a promising new actuation technology that allows for an increase in energy recuperation, efficiency, and autonomy

    Novel SPECTA Actuator to Improve Energy Recuperation and Efficiency

    No full text
    The current state of the art in compliant actuation has already good performance, but this is still insufficient to provide a decent autonomy for the next generation of robots. In this paper, a next step is taken to improve the efficiency of actuators by tackling and enhancing the Series-Parallel Elastic Constant Torque Actuation (SPECTA) concept, which has previously been analyzed in simulations. In this work, the efficiency is increased further by decoupling the springs and their driving parts through the use of locking mechanisms, such that the motors are not always loaded and the springs can easily store energy from both input or output. Simulations have been performed to confirm this and they also showed that, in the SPECTA concept, it is always better to use high-speed motors instead of high-torque motors, even with non-efficient gearing. In this paper, the SPECTA concept is also validated experimentally with the use of a newly built test setup. In light of the obtained results, showing an increase in efficiency for almost all working points, it can be stated that SPECTA is a promising new actuation technology that allows for an increase in energy recuperation, efficiency, and autonomy
    corecore