325 research outputs found

    A Closed Contour of Integration in Regge Calculus

    Get PDF
    The analytic structure of the Regge action on a cone in dd dimensions over a boundary of arbitrary topology is determined in simplicial minisuperspace. The minisuperspace is defined by the assignment of a single internal edge length to all 1-simplices emanating from the cone vertex, and a single boundary edge length to all 1-simplices lying on the boundary. The Regge action is analyzed in the space of complex edge lengths, and it is shown that there are three finite branch points in this complex plane. A closed contour of integration encircling the branch points is shown to yield a convergent real wave function. This closed contour can be deformed to a steepest descent contour for all sizes of the bounding universe. In general, the contour yields an oscillating wave function for universes of size greater than a critical value which depends on the topology of the bounding universe. For values less than the critical value the wave function exhibits exponential behaviour. It is shown that the critical value is positive for spherical topology in arbitrary dimensions. In three dimensions we compute the critical value for a boundary universe of arbitrary genus, while in four and five dimensions we study examples of product manifolds and connected sums.Comment: 16 pages, Latex, To appear in Gen. Rel. Gra

    Spallation Residues in the Reaction 56Fe + p at 0.3, 0.5, 0.75, 1.0 and 1.5 A GeV

    Get PDF
    The spallation residues produced in the bombardment of 56}Fe at 1.5, 1.0, 0.75, 0.5 and 0.3 A GeV on a liquid-hydrogen target have been measured using the reverse kinematics technique and the Fragment Separator at GSI (Darmstadt). This technique has permitted the full identification in charge and mass of all isotopes produced with cross-sections larger than 10^{-2} mb down to Z=8. Their individual production cross-sections and recoil velocities at the five energies are presented. Production cross-sections are compared to previously existing data and to empirical parametric formulas, often used in cosmic-ray astrophysics. The experimental data are also extensively compared to different combinations of intra-nuclear cascade and de-excitation models. It is shown that the yields of the lightest isotopes cannot be accounted for by standard evaporation models. The GEMINI model, which includes an asymmetric fission decay mode, gives an overall good agreement with the data. These experimental data can be directly used for the estimation of composition modifications and damages in materials containing iron in spallation sources. They are also useful for improving high precision cosmic-ray measurements.Comment: Submited to Phys. Rev. C (10/2006

    Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Although systemic T-cell responses against tumor antigens and tumor infiltration by T cells have been investigated in colorectal cancer (CRC), the initiation of spontaneous immune responses <it>in situ </it>is not well understood. Macrophages and dendritic cells (DC) play an important role as a link between innate and adaptive immune response. The aim of the present study was to analyze macrophage and DC infiltration in CRC and to investigate whether there is a correlation to systemic T-cell response, regulatory T cell (Treg) infiltration, and survival.</p> <p>Methods</p> <p>Immunohistological staining was performed with nine markers for macrophages and DC (CD68, CD163, S100, CD11c, CD208, CD209, CD123, CD1a, Langerin) in 40 colorectal cancer samples from patients, in whom the state of systemic T-cell responses against tumor-associated antigens (TAA) and Treg infiltration had previously been determined.</p> <p>Results</p> <p>All specimens contained cells positive for CD68, CD163, S100 and CD1a in epithelial tumor tissue and tumor stroma. Only a very few (less than median 3/HPF) CD123+, CD1a+, CD11c+, CD 208+, CD209+, or Langerin+ cells were detected in the specimens. Overall, we found a trend towards increased infiltration by S100-positive DC and a significantly increased number of stromal S100-positive DC in patients without T-cell response. There was an increase of stromal S100 DC and CD163 macrophages in limited disease (S100: 11.1/HPF vs. 7.3/HPF, p = 0.046; CD163: 11.0/HPF vs. 8.1/HPF, p = 0.06). We found a significant, positive correlation between S100-positive DC and FOXP3-positive Tregs. Survival in patients with high DC infiltration was significantly better than that in those with low DC infiltration (p < 0.05). Furthermore, we found a trend towards better survival for increased infiltration with CD163-positive macrophages (p = 0.07).</p> <p>Conclusion</p> <p>The present <it>in situ </it>study adds new data to the discussion on the interaction between the innate and adoptive immune system. Our data strongly support the hypothesis that tumor-infiltrating DC are a key factor at the interface between innate and adaptive immune response in malignant disease. Tumor infiltrating S100-positive DC show an inverse relationship with the systemic antigen-specific T-cell response, a positive correlation with regulatory T cells, and a positive association with survival in CRC. These data put tumor-infiltrating DC at the center of the relevant immune response in CRC.</p

    Gastric cancer screening by combined assay for serum anti-Helicobacter pylori IgG antibody and serum pepsinogen levels — “ABC method”

    Get PDF
    The current status of screening for gastric cancer-risk (gastritis A, B, C, D) method using combined assay for serum anti-Helicobacter pylori (Hp) IgG antibody and serum pepsinogen (PG) levels, “ABC method”, was reviewed and the latest results of our ongoing trial are reported. It was performed using the following strategy: Subjects were classified into 1 of 4 risk groups based on the results of the two serologic tests, anti-Hp IgG antibody titers and the PG I and II levels: Group A [Hp(−)PG(−)], infection-free subjects; Group B [Hp(+)PG(−)], chronic atrophic gastritis (CAG) free or mild; Group C [Hp(+)PG(+)], CAG; Group D [Hp(−)PG(+)]), severe CAG with extensive intestinal metaplasia. Continuous endoscopic follow-up examinations are required to detect early stages of gastric cancer. Asymptomatic Group A, which accounts for 50–80% of all the subjects may be excluded from the secondary endoscopic examination, from the viewpoint of efficiency. Hp-infected subjects should be administered eradication treatment aimed at the prevention of gastric cancer

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
    corecore