8 research outputs found

    Dynamics of Primary Relaxation Phenomena upon Photoexcitation of Conjugated Molecules in Liquids

    No full text
    Observer et analyser les processus ultrarapides se produisant dans les molĂ©cules en phase liquide aprĂšs photoexcitation, pose un dĂ©fi important, parce qu'ils se dĂ©roulent dans des dĂ©lais extrĂȘmement courts. La complexitĂ© s’accroĂźt encore parce que, dans de nombreux cas, ces processus peuvent se produire simultanĂ©ment. Par consĂ©quent, choisir des systĂšmes adaptĂ©s Ă  l’étude des diffĂ©rents phĂ©nomĂšnes ultrarapides et en utilisant des instruments de spectroscopie rĂ©solus dans le temps Ă  haute rĂ©solution temporelle, devient impĂ©ratif. Le but de cette thĂšse est d’étudier les phĂ©nomĂšnes de relaxation primaire ultrarapides en utilisant la spectroscopie d’absorption et fluorescence ultrarapide, complĂ©tĂ©e par la spectroscopie stationnaire et soutenue par des calculs de chimie quantique. La relaxation de l’énergie vibrationnelle (REV) fait l’objet du Chapitre 3. GĂ©nĂ©ralement en phase liquide, REV est discutĂ© dans le contexte de la redistribution vibrationnelle intramolĂ©culaires (RVI) et refroidissement vibrationnelle (RV). Les calculs de chimie quantique ont identifiĂ© les modes actifs de Franck-Condon responsables des transitions vibroniques. En utilisant la spectroscopie de fluorescence rĂ©solue dans le temps avec excitation rĂ©glable, les molĂ©cules ont Ă©tĂ© photoexcitĂ©es avec diffĂ©rentes quantitĂ©s d’énergie. Dans le Chapitre 4, la relaxation du solvant d’une sonde Ă©missive dipolaire et des molĂ©cules soumises Ă  une rupture de symĂ©trie dans l’état excitĂ© ont Ă©tĂ© comparĂ©es. L’étude a Ă©tĂ© rĂ©alisĂ©e dans des solvants purs et mĂ©langes de solvants. Il a Ă©tĂ© dĂ©terminĂ© que le Stokes shift dynamique observĂ© est plus rapide dans les molĂ©cules qui subissent une rupture de symĂ©trie dans l’état excitĂ©. Cela est dĂ» au moment dipolaire qui augmente avec le temps, contrairement au moment dipolaire des sondes dipolaires qui reste constant. A notre connaissance, la solvatation prĂ©fĂ©rentielle due Ă  l’enrichissement diĂ©lectrique n’a pas encore Ă©tĂ© Ă©tudiĂ©e dans de telles molĂ©cules quadripolaires. Dans ces dĂ©lais ultrarapides, les molĂ©cules peuvent subir des changements structurels Ă  l’état excitĂ©, la planarisation Ă©tant l’une des plus importantes. Des changements structurels peuvent Ă©galement ĂȘtre induits par l’intercalation avec d’autres entitĂ©s, telles que le cas de la famille des colorants de l’ADN. Dans le Chapitre 5, la dynamique de planarisation et le dĂ©sordre de torsion du 9,10-bis(phĂ©nylĂ©thynyl)-anthracĂšne ont Ă©tĂ© Ă©tudiĂ©s. Les mesures rĂ©solues dans le temps ont dĂ©terminĂ© que la dynamique de planarisation dans l’état excitĂ© Ă©tait partiellement pilotĂ©e par l’inertie. La dynamique de planarisation dans l’état fondamental s’est avĂ©rĂ©e purement diffusive. L’absorption Ă©lectronique transitoire a Ă©tĂ© utilisĂ©e pour effectuer une excitation Ă  bord rouge du spectre d’absorption, ce qui a permis d’obtenir une photosĂ©lection de molĂ©cules planaires. Dans ce mĂȘme chapitre, la photophysique de deux grandes sondes push-pull planarisables non centrosymĂ©triques, dĂ©rivĂ©es du Flipper, synthĂ©tisĂ©es dans le groupe du Prof. Stefan Matile a Ă©tĂ© Ă©tudiĂ©e. La photosĂ©lection des molĂ©cules planaires et tordues a Ă©tĂ© rĂ©ussie. Dans le chapitre 5, YOYO-1 a Ă©tĂ© Ă©galement Ă©tudiĂ©e sous sa forme libre et liĂ©e Ă  l’ADN. Les durĂ©es de vie de la fluorescence du YOYO-1 sous sa forme libre ont Ă©tĂ© dĂ©terminĂ©es dans plusieurs solvants.</p

    Torsional disorder and planarization dynamics: 9,10-bis(phenylethynyl)anthracene as a case study

    No full text
    Torsional disorder of the title molecule is strongly reduced in the excited state. Planarization occurs predominantly via inertial motion, whereas it is a purely diffusive process in the ground state. </p

    Torsional disorder and planarisation dynamics: 9,10-bis(phenylethynyl)anthracene as a case study

    No full text
    AbstractData published in the article: 'Torsional disorder and planarisation dynamics: 9,10-bis(phenylethynyl)anthracene as a case study', Ina Fureraj, Darya Budkina and Eric Vauthey, Phys. Chem. Chem. Phys. (2022) https://doi.org/10.1039/D2CP03909

    Halogen-Bond Assisted Photoinduced Electron Transfer

    No full text
    The formation of a halogen-bond (XB) complex in the excited state was recently reported with a quadrupolar acceptor&ndash;donor&ndash;acceptor dye in two iodine-based liquids (J. Phys. Chem. Lett. 2017, 8, 3927&ndash;3932). The ultrafast decay of this excited complex to the ground state was ascribed to an electron transfer quenching by the XB donors. We examined the mechanism of this process by investigating the quenching dynamics of the dye in the S1 state using the same two iodo-compounds diluted in inert solvents. The results were compared with those obtained with a non-halogenated electron acceptor, fumaronitrile. Whereas quenching by fumaronitrile was found to be diffusion controlled, that by the two XB compounds is slower, despite a larger driving force for electron transfer. A Smoluchowski&ndash;Collins&ndash;Kimball analysis of the excited-state population decays reveals that both the intrinsic quenching rate constant and the quenching radius are significantly smaller with the XB compounds. These results point to much stronger orientational constraint for quenching with the XB compounds, indicating that electron transfer occurs upon formation of the halogen bond

    Core‐Alkynylated Fluorescent Flippers: Altered Ultrafast Photophysics to Track Thick Membranes

    No full text
    Fluorescent flippers have been introduced as small‐molecule probes to image membrane tension in living systems. This study describes the design, synthesis, spectroscopic and imaging properties of flippers that are elongated by one and two alkynes inserted between the push and the pull dithienothiophene domains. The resulting mechanophores combine characteristics of flippers, reporting on physical compression in the ground state, and molecular rotors, reporting on torsional motion in the excited state, to take their photophysics to new level of sophistication. Intensity ratios in broadened excitation bands from differently twisted conformers of core‐alkynylated flippers thus report on mechanical compression. Lifetime boosts from ultrafast excited‐state planarization and lifetime drops from competitive intersystem crossing into triplet states report on viscosity. In standard lipid bilayer membranes, core‐alkynylated flippers are too long for one leaflet and tilt or extend into disordered interleaflet space, which preserves rotor‐like torsional disorder and thus weak, blue‐shifted fluorescence. Flipper‐like planarization occurs only in highly ordered membranes of matching leaflet thickness, where they light up and selectively report on these thick membranes with red‐shifted, sharpened excitation maxima, high intensity and long lifetime.</p

    Phonon-Mediated Attractive Interactions between Excitons in Lead-Halide-Perovskites

    No full text
    Understanding the origin of electron-phonon coupling in lead-halide perovskites (LHP) is key to interpreting and leveraging their optical and electronic properties. Here we perform femtosecond-resolved, optical-pump, electron-diffraction-probe measurements to quantify the lattice reorganization occurring as a result of photoexcitation in LHP nanocrystals. Photoexcitation is found to drive a reduction in lead-halide octahedra tilts and distortions in the lattice, a result of deformation potential coupling to low energy optical phonons. Our results indicate particularly strong coupling in FAPbBr3, and far weaker coupling in CsPbBr3, highlighting differences in the dominant machanisms governing electron-phonon coupling in LHPs. We attribute the enhanced coupling in FAPbBr3 to its disordered crystal structure, which persists down to cryogenic temperatures. We find the reorganizations induced by each exciton in a multiexcitonic state constructively interfere, giving rise to a coupling strength which scales quadratically with the exciton number. This superlinear scaling induces phonon-mediated attractive interactions between excitations in LHPs
    corecore