46 research outputs found

    Ammonium Fluoride as a Hydrogen-disordering Agent for Ice

    Full text link
    The removal of residual hydrogen disorder from various phases of ice with acid or base dopants at low temperatures has been a focus of intense research for many decades. As an antipode to these efforts, we now show using neutron diffraction that ammonium fluoride (NH4F) is a hydrogen-disordering agent for the hydrogen-ordered ice VIII. Cooling its hydrogen-disordered counterpart ice VII doped with 2.5 mol% ND4F under pressure leads to a hydrogen-disordered ice VIII with ~31% residual hydrogen disorder illustrating the long-range hydrogen-disordering effect of ND4F. The doped ice VII could be supercooled by ~20 K with respect to the hydrogen-ordering temperature of pure ice VII after which the hydrogen-ordering took place slowly over a ~60 K temperature window. These findings demonstrate that ND4F-doping slows down the hydrogen-ordering kinetics quite substantially. The partial hydrogen order of the doped sample is consistent with the antiferroelectric ordering of pure ice VIII. Yet, we argue that local ferroelectric domains must exist between ionic point defects of opposite charge. In addition to the long-range effect of NH4F-doping on hydrogen-ordered water structures, the design principle of using topological charges should be applicable to a wide range of other 'ice-rule' systems including spin ices and related polar materials.Comment: 23 pages, 4 figures, 2 table

    Comprehensive determination of the high-pressure structural behaviour of BaTiO<sub>3</sub>

    Get PDF
    We have mapped the phase diagram of BaTiO3 more extensively than previous attempts using high-pressure neutron-powder diffraction. The mapping of the phase diagram has been performed using isothermal compression at fixed temperatures (175, 225, 290, 480 K) within each of the known crystallographic phases, up to ∌6 GPa using a large volume press. The crystallographic structure of each phase has been measured, and the determined absolute atomic displacements of all atoms within the cell have provided detailed information on the order of the phase transitions observed, and the behaviour of the ferroelectric dipole moment.Publisher PDFPeer reviewe

    Recovering local structure information from high‐pressure total scattering experiments

    Get PDF
    High pressure is a powerful thermodynamic tool for exploring the structure and the phase behaviour of the crystalline state, and is now widely used in conventional crystallographic measurements. High‐pressure local structure measurements using neutron diffraction have, thus far, been limited by the presence of a strongly scattering, perdeuterated, pressure‐transmitting medium (PTM), the signal from which contaminates the resulting pair distribution functions (PDFs). Here, a method is reported for subtracting the pairwise correlations of the commonly used 4:1 methanol:ethanol PTM from neutron PDFs obtained under hydrostatic compression. The method applies a molecular‐dynamics‐informed empirical correction and a non‐negative matrix factorization algorithm to recover the PDF of the pure sample. Proof of principle is demonstrated, producing corrected high‐pressure PDFs of simple crystalline materials, Ni and MgO, and benchmarking these against simulated data from the average structure. Finally, the first local structure determination of α‐quartz under hydrostatic pressure is presented, extracting compression behaviour of the real‐space structure
    corecore