4,329 research outputs found
Negative affective environments improve complex solving performance
Based on recent affect-cognition theories (Bless et al., 1996; Fiedler, 2001; Sinclair, 1988), the present study predicted and showed a differentiated influence of nice and nasty environments on complex problem solving (CPS). Environments were constructed by manipulating the target value ‘capital’ of a complex scenario: Participants in the nice environment (N=42) easily raised the capital and received positive feedback, whereas those in the nasty environment (N=42) hardly enhanced the capital and got negative feedback. The results showed that nasty environments increased negative and decreased positive affect. The reverse was true for nice environments. Furthermore, nasty environments influenced CPS by leading to a higher information retrieval and a better CPS performance. Surprisingly, the influence of environment on CPS was not mediated through affect (cf. Soldat & Sinclair, 2001), as recent affect-cognition theories suggest. The missing influence of affect and the strong impact of environment are discussed
Structured learning of assignment models for neuron reconstruction to minimize topological errors
© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Structured learning provides a powerful framework for empirical risk minimization on the predictions of
structured models. It allows end-to-end learning of model parameters to minimize an application specific loss function. This framework is particularly well suited for discrete optimization models that are used for neuron reconstruction from anisotropic electron microscopy (EM) volumes. However, current methods are still learning unary potentials by training a classifier that is agnostic about the model it is used in. We believe the reason for that lies in the difficulties of (1) finding a representative training sample, and (2) designing an application specific loss function that captures the quality of a proposed solution. In this paper, we show how to find a representative training sample from human generated ground truth, and propose a loss function that is suitable to minimize topological errors in the reconstruction. We compare different training methods on two challenging EM-datasets. Our structured learning approach shows consistently higher reconstruction accuracy than other current learning methods.Peer ReviewedPostprint (author's final draft
Contributions to the mixed-alkali effect in molecular dynamics simulations of alkali silicate glasses
The mixed-alkali effect on the cation dynamics in silicate glasses is
analyzed via molecular dynamics simulations. Observations suggest a description
of the dynamics in terms of stable sites mostly specific to one ionic species.
As main contributions to the mixed--alkali slowdown longer residence times and
an increased probability of correlated backjumps are identified. The slowdown
is related to the limited accessibility of foreign sites. The mismatch
experienced in a foreign site is stronger and more retarding for the larger
ions, the smaller ions can be temporarily accommodated. Also correlations
between unlike as well as like cations are demonstrated that support
cooperative behavior.Comment: 10 pages, 12 figures, 1 table, revtex4, submitted to Phys. Rev.
Mesoscopic non-equilibrium thermodynamics approach to non-Debye dielectric relaxation
Mesoscopic non-equilibrium thermodynamics is used to formulate a model
describing non-homogeneous and non-Debye dielectric relaxation. The model is
presented in terms of a Fokker-Planck equation for the probability distribution
of non-interacting polar molecules in contact with a heat bath and in the
presence of an external time-dependent electric field. Memory effects are
introduced in the Fokker-Planck description through integral relations
containing memory kernels, which in turn are used to establish a connection
with fractional Fokker-Planck descriptions. The model is developed in terms of
the evolution equations for the first two moments of the distribution function.
These equations are solved by following a perturbative method from which the
expressions for the complex susceptibilities are obtained as a functions of the
frequency and the wave number. Different memory kernels are considered and used
to compare with experiments of dielectric relaxation in glassy systems. For the
case of Cole-Cole relaxation, we infer the distribution of relaxation times and
its relation with an effective distribution of dipolar moments that can be
attributed to different segmental motions of the polymer chains in a melt.Comment: 33 pages, 6 figure
Optimization as an analysis tool for human complex decision making
We present a problem class of mixed-integer nonlinear programs (MINLPs) with nonconvex continuous relaxations which stem from economic test scenarios that are used in the analysis of human complex problem solving. In a round-based scenario participants hold an executive function. A posteriori a performance indicator is calculated and correlated to personal measures such as intelligence, working memory, or emotion regulation. Altogether, we investigate 2088 optimization problems that differ in size and initial conditions, based on real-world experimental data from 12 rounds of 174 participants. The goals are twofold. First, from the optimal solutions we gain additional insight into a complex system, which facilitates the analysis of a participant’s performance in the test. Second, we propose a methodology to automatize this process by providing a new criterion based on the solution of a series of optimization problems. By providing a mathematical optimization model and this methodology, we disprove the assumption that the “fruit fly of complex problem solving,” the Tailorshop scenario that has been used for dozens of published studies, is not mathematically accessible—although it turns out to be extremely challenging even for advanced state-of-the-art global optimization algorithms and we were not able to solve all instances to global optimality in reasonable time in this study. The publicly available computational tool Tobago [TOBAGO web site https://sourceforge.net/projects/tobago] can be used to automatically generate problem instances of various complexity, contains interfaces to AMPL and GAMS, and is hence ideally suited as a testbed for different kinds of algorithms and solvers. Computational practice is reported with respect to the influence of integer variables, problem dimension, and local versus global optimization with different optimization codes
The Use of the "Preclosure” Technique for Antegrade Aspiration Thrombectomy with Large Catheters in Acute Limb Ischemia
Purpose: This study was designed to assess retrospectively short- and mid-term outcomes of the use of a suture-mediated closure device to close the antegrade access in patients undergoing percutaneous aspiration thrombectomy with large catheters for acute leg ischemia. Methods: Between November 2005 and February 2010, a suture-mediated active closure system (ProGlide® 6F, Abbott) was placed before arterial sheath (mean 9F, range 6-12F) introduction in 101 patients (74 men, 73%, mean age 70.1±12.6years standard deviation). Data regarding mortality, complications, and factors contributing to vascular complications at the access site was collected for 6month after the intervention to detect device-related problems. As a coincidence, 77 patients had follow-up visits for a duplex ultrasound. Results: There were a total of 19 vascular complications (19%) at the puncture site, all of which were of hemorrhagic nature and none of which consisted of vessel occlusion. Two major outcome complications (2%) occurred. A retroperitoneal hematoma and a serious inguinal bleeding required additive treatment and did not result in permanent sequelae. Nine cases involved death of which eight were not attributable to the closure and one remained unclear. Successful closure was achieved in 95 patients (94%); additional manual compression was sufficient in the majority of the remaining patients. Numerous factors contributing to vascular complications were encountered. Conclusions: With acceptable short- and mid-term outcomes, the "preclose” technique can be a reliable option for the closure of a large antegrade femoral access even for patients at a high risk of vascular complications, such as those undergoing aspiration thrombectom
Phylogeny of a Neotropical Clade in the Gesneriaceae: More Tales of Convergent Evolution
The Gesneriaceae is a family known for convergent evolution of complex floral forms. As a result, defining genera and resolving evolutionary relationships among such genera using morphological data alone has been challenging and often does not accurately reflect monophyletic lineages. The tribe Episcieae is the most diverse within Neotropical Gesneriaceae in terms of its number of species and morphological diversity. As a result, defining genera using floral characters has been historically troublesome. Here we investigate relationships among genera of the tribe using an array of chloroplast DNA, nuclear ribosomal genes, and low-copy nuclear genes to provide resolution for the monophyly of the genera and relationships among the monophyletic groups. All known genera in the tribe (with the exception of the monospecific Lampadaria) have been sampled, and most have been sampled to provide an assessment to determine their monophyly. Of the 17 genera in the tribe that comprise more than a single species, we have sampled 15 with at least two species. The following six genera are identified as para- or polyphyletic: Neomortonia, Episcia, Paradrymonia, Nautilocalyx, Codonanthe, and Nematanthus. Our results strongly support at least three independent origins of fleshy fruits, which are defined here as fleshy display capsules or indehiscent berries
Local impact of solar variation on NO2 in the lower mesosphere and upper stratosphere from 2007 to 2012
MIPAS/ENVISAT data of nighttime NO2 volume mixing ratios (VMR) from 2007 until 2012 between 40 km and 62 km altitude are compared with the geomagnetic Ap index and solar Lyman-α radiation. The local impact of variations in geomagnetic activity and solar radiation on the VMR of NO 2 in the lower mesosphere and upper stratosphere in the Northern Hemisphere is investigated by means of superposed epoch analysis. Observations in the Northern Hemisphere show a clear 27-day period of the NO2 VMR. This is positively correlated with the geomagnetic Ap index at 60-70° N geomagnetic latitude but also partially correlated with the solar Lyman-α radiation. However, the dependency of NO2 VMR on geomagnetic activity can be distinguished from the impact of solar radiation. This indicates a direct response of NOx (NO + NO2) to geomagnetic activity, probably due to precipitating particles. The response is detected in the range between 46 km and 52 km altitude. The NO2 VMR epoch maxima due to geomagnetic activity is altitude-dependent and can reach up to 0.4 ppb, leading to mean production rates of 0.029 ppb (Ap d)-1. Observations in the Southern Hemisphere do not have the same significance due to a worse sampling of geomagnetic storm occurances. Variabilities due to solar variation occur at the same altitudes at 60-70° S geomagnetic latitude but cannot be analyzed as in the Northern Hemisphere. This is the first study showing the direct impact of electron precipitation on NOx at those altitudes in the spring/summer/autumn hemisphere. © 2014 Author(s).F. Friederich and M. Sinnhuber gratefully acknowledge funding by the Helmholtz Association of German Research Centres (HGF), grant VH-NG-624Peer Reviewe
Monte Carlo Simulation Calculation of Critical Coupling Constant for Continuum \phi^4_2
We perform a Monte Carlo simulation calculation of the critical coupling
constant for the continuum {\lambda \over 4} \phi^4_2 theory. The critical
coupling constant we obtain is [{\lambda \over \mu^2}]_crit=10.24(3).Comment: 11 pages, 4 figures, LaTe
- …
