36 research outputs found
SOAP3-dp: Fast, Accurate and Sensitive GPU-Based Short Read Aligner
To tackle the exponentially increasing throughput of Next-Generation Sequencing (NGS), most of the existing short-read aligners can be configured to favor speed in trade of accuracy and sensitivity. SOAP3-dp, through leveraging the computational power of both CPU and GPU with optimized algorithms, delivers high speed and sensitivity simultaneously. Compared with widely adopted aligners including BWA, Bowtie2, SeqAlto, CUSHAW2, GEM and GPU-based aligners BarraCUDA and CUSHAW, SOAP3-dp was found to be two to tens of times faster, while maintaining the highest sensitivity and lowest false discovery rate (FDR) on Illumina reads with different lengths. Transcending its predecessor SOAP3, which does not allow gapped alignment, SOAP3-dp by default tolerates alignment similarity as low as 60%. Real data evaluation using human genome demonstrates SOAP3-dp's power to enable more authentic variants and longer Indels to be discovered. Fosmid sequencing shows a 9.1% FDR on newly discovered deletions. SOAP3-dp natively supports BAM file format and provides the same scoring scheme as BWA, which enables it to be integrated into existing analysis pipelines. SOAP3-dp has been deployed on Amazon-EC2, NIH-Biowulf and Tianhe-1A
SOAP3-dp: Fast, Accurate and Sensitive GPU-based Short Read Aligner
To tackle the exponentially increasing throughput of Next-Generation
Sequencing (NGS), most of the existing short-read aligners can be configured to
favor speed in trade of accuracy and sensitivity. SOAP3-dp, through leveraging
the computational power of both CPU and GPU with optimized algorithms, delivers
high speed and sensitivity simultaneously. Compared with widely adopted
aligners including BWA, Bowtie2, SeqAlto, GEM and GPU-based aligners including
BarraCUDA and CUSHAW, SOAP3-dp is two to tens of times faster, while
maintaining the highest sensitivity and lowest false discovery rate (FDR) on
Illumina reads with different lengths. Transcending its predecessor SOAP3,
which does not allow gapped alignment, SOAP3-dp by default tolerates alignment
similarity as low as 60 percent. Real data evaluation using human genome
demonstrates SOAP3-dp's power to enable more authentic variants and longer
Indels to be discovered. Fosmid sequencing shows a 9.1 percent FDR on newly
discovered deletions. SOAP3-dp natively supports BAM file format and provides a
scoring scheme same as BWA, which enables it to be integrated into existing
analysis pipelines. SOAP3-dp has been deployed on Amazon-EC2, NIH-Biowulf and
Tianhe-1A.Comment: 21 pages, 6 figures, submitted to PLoS ONE, additional files
available at "https://www.dropbox.com/sh/bhclhxpoiubh371/O5CO_CkXQE".
Comments most welcom
A pilot controlled trial of a combination of dense cranial electroacupuncture stimulation and body acupuncture for post-stroke depression
BACKGROUND: Our previous studies have demonstrated the treatment benefits of dense cranial electroacupuncture stimulation (DCEAS), a novel brain stimulation therapy in patients with major depression, postpartum depression and obsessive-compulsive disorder. The purpose of the present study was to further evaluate the effectiveness of DCEAS combined with body acupuncture and selective serotonin reuptake inhibitors (SSRIs) in patients with post-stroke depression (PSD). METHODS: In a single-blind, randomized controlled trial, 43 patients with PSD were randomly assigned to 12 sessions of DCEAS plus SSRI plus body electroacupuncture (n = 23), or sham (non-invasive cranial electroacupuncture, n-CEA) plus SSRI plus body electroacupuncture (n = 20) for 3 sessions per week over 4 weeks. Treatment outcomes were measured using the 17-item Hamilton Depression Rating Scale (HAMD-17), the Clinical Global Impression - Severity scale (CGI-S) and Barthel Index (BI), a measure used to evaluate movement ability associated with daily self-caring activity. RESULTS: DCEAS produced a significantly greater reduction of both HAMD-17 and CGI-S as early as week 1 and CGI-S at endpoint compared to n-CEA, but subjects of n-CEA group exhibited a significantly greater improvement on BI at week 4 than DCEAS. Incidence of adverse events was not different in the two groups. CONCLUSIONS: These results indicate that DCEAS could be effective in reducing stroke patients’ depressive symptoms. Superficial electrical stimulation in n-CEA group may be beneficial in improving movement disability of stroke patients. A combination of DCEAS and body acupuncture can be considered a treatment option for neuropsychiatric sequelae of stroke. TRIAL REGISTRATION: http://www.clinicaltrials.gov, NCT01174394
Effects of SARS-CoV-2 infection on incidence and treatment strategies of hepatocellular carcinoma in people with chronic liver disease
BACKGROUND: Chronic liver disease (CLD) was associated with adverse clinical outcomes among people with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. AIM To determine the effects of SARS-CoV-2 infection on the incidence and treatment strategy of hepatocellular carcinoma (HCC) among patients with CLD. METHODS: A retrospective, territory-wide cohort of CLD patients was identified from an electronic health database in Hong Kong. Patients with confirmed SARS-CoV-2 infection [coronavirus disease 2019 (COVID-19)+CLD] between January 1, 2020 and October 25, 2022 were identified and matched 1:1 by propensity-score with those without (COVID-19-CLD). Each patient was followed up until death, outcome event, or November 15, 2022. Primary outcome was incidence of HCC. Secondary outcomes included all-cause mortality, adverse hepatic outcomes, and different treatment strategies to HCC (curative, non-curative treatment, and palliative care). Analyses were further stratified by acute (within 20 d) and post-acute (21 d or beyond) phases of SARS-CoV-2 infection. Incidence rate ratios (IRRs) were estimated by Poisson regression models. RESULTS: Of 193589 CLD patients (> 95% non-cirrhotic) in the cohort, 55163 patients with COVID-19+CLD and 55163 patients with COVID-19-CLD were included after 1:1 propensity-score matching. Upon 249-d median follow-up, COVID-19+CLD was not associated with increased risk of incident HCC (IRR: 1.19, 95%CI: 0.99-1.42, P = 0.06), but higher risks of receiving palliative care for HCC (IRR: 1.60, 95%CI: 1.46-1.75, P < 0.001), compared to COVID-19- CLD. In both acute and post-acute phases of infection, COVID-19+CLD were associated with increased risks of all-cause mortality (acute: IRR: 7.06, 95%CI: 5.78-8.63, P < 0.001; post-acute: IRR: 1.24, 95%CI: 1.14-1.36, P < 0.001) and adverse hepatic outcomes (acute: IRR: 1.98, 95%CI: 1.79-2.18, P < 0.001; post-acute: IRR: 1.24, 95%CI: 1.13-1.35, P < 0.001), compared to COVID-19-CLD. CONCLUSION: Although CLD patients with SARS-CoV-2 infection were not associated with increased risk of HCC, they were more likely to receive palliative treatment than those without. The detrimental effects of SARS-CoV-2 infection persisted in post-acute phase
Kinetic and structural studies on 'tethered' Ru(II) arene ketone reduction catalysts
A series of kinetic and structural investigations on ruthenium-based catalysts for asymmetric transfer hydrogenation (ATH) of ketones are reported. A method is reported for monitoring the formation of ruthenium hydride species in real time using H-1 NMR spectroscopy
"Ether-Linked" organometallic catalysts for ketone reduction reactions
The synthesis and applications to asymmetric ketone hydrogenation of a series of novel Ru(II) catalysts is described. The design of the ligands ensures that the configuration at the metal atom is retained and cannot invert during the catalytic cycle. The catalysts generate alcohols in moderate to good enantiomeric excess and conversion
The use of a [4+2] cycloaddition reaction for the preparation of a series of 'tethered' Ru(II)-diamine and aminoalcohol complexes
A series of catalysts have been prepared for use in the asymmetric transfer hydrogenation of ketones. The complexes were prepared using a [4 + 2] cycloaddition reaction at a key step in the reaction sequence. This provides a means for the synthesis of catalysts with modi. cations at specific sites