53 research outputs found

    Comparison of Lower Extremity Propulsion Impulses between Recreational Athletes with Chronic Ankle Instability and Healthy Athletes During Single Leg Hop Tests

    Get PDF
    This study examined propulsion net joint moment impulses during two single-leg hop tests (SLHTs) frequently used in athletic training as return-to-play criteria. Healthy recreational athletes were statistically compared to those with chronic ankle instability (CAI), during an anterior and a crossover SLHT, looking for differences, potentially leading to compensatory patterns. When comparing CAI to healthy participants there were no significant differences during the crossover SLHT. For the anterior SLHT, significant differences were found during ankle dorsiflexion, ankle inversion, and hip abduction. Statistical comparison was also made between the anterior and the crossover SLHT. Healthy participants had statistical difference in internal knee rotation when comparing anterior SLHTs to crossover SLHTs. No statistically significant differences were found between the anterior and crossover SLHT for CAI participants. These few significant differences allude to the SLHT being insufficient in determining CAI and leave room for other aspects of propulsion kinetics to be examined

    Using EBSD and TEM-Kikuchi patterns to study local crystallography at the domain boundaries of lead zirconate titanate

    Get PDF
    Reliable EBSD mapping of 90° domains in a tetragonal ferroelectric perovskite has been achieved for the first time, together with reliable automated orientation determination from TEM-Kikuchi patterns. This has been used to determine misorientation angles at 90° domain boundaries and thus local <i>c</i>/<i>a</i> ratios. The sources of orientation noise/error and their effects on the misorientation angle data have been thoroughly analyzed and it is found that this gives a cosine distribution of misorientation angles about the mean with a characteristic width related to the width of the orientation noise distribution. In most cases, a good agreement is found between local <i>c</i>/<i>a</i> ratios and global measurements by X-ray diffraction, but some clear discrepancies have also been found suggesting that real local variations are present, perhaps as a consequence of compositional inhomogeneities

    Advanced characterization techniques for high-angular and high-spatial resolutions in the scanning electron microscope

    Get PDF
    High-angular resolution electron diffraction-based techniques aim at measuring relative lattice rotations and elastic strains with an accuracy about 1.10-4 (<0.01°) in the scanning electron microscope (SEM). These metrics are essential for the fine characterization of deformation structures in terms of grain internal disorientations and geometrically necessary dislocation densities. To this purpose, relative deformations between electron diffraction patterns are retrieved with subpixel accuracy using digital image correlation (DIC) techniques. Here, a novel DIC approach is proposed. It relies on a linear homography [1], i.e., a geometric transformation often met in photogrammetry to model projections. The method is implemented in ATEX-software [2], developed at the University of Lorraine. Its performances are illustrated from both a semi-conductor and a metal. First, lattice rotation and elastic strain fields are investigated in the vicinity of a giant screw dislocation in GaN single crystal using the electron backscattered diffraction technique (Fig. 1). Second, the proposed method is coupled with the on-axis Transmission Kikuchi Diffraction (TKD) configuration to characterize a nanocrystalline aluminium obtained by severe plastic deformation. On-axis TKD consists in observing a thin foil in transmission in the SEM, using a scintillator is placed beneath the specimen, perpendicularly to the electron beam. Thanks to this coupling, high-spatial (3-6 nm) and high-angular (~0.01°) resolutions are simultaneously achieved in SEM. [3]

    Mechanical properties, microstructure and crystallographic texture of magnesium AZ91-D alloy welded by Friction Stir Welding (FSW)

    Get PDF
    The objective of the study was to characterize the properties of a magnesium alloy welded by friction stir welding (FSW). The results led to a better understanding of the relationship between this process and the microstructure and anisotropic properties of alloy materials. Welding principally leads to a large reduction in grain size in welded zones due to the phenomenon of dynamic recrystallization. The most remarkable observation was that crystallographic textures appeared from a base metal without texture in two zones: the thermo-mechanically affected and stir welded zones. The latter zone has the peculiarity of possessing a marked texture with two components on the basal plane and the pyramidal plane. These characteristics disappeared in the TMAZ, which had only one component following the basal plane. These modifications have been explained by the nature of the plastic deformation in these zones, which occurs at a moderate temperature in the TMAZ and high temperature in the SWZ

    Particular solutions of the pdf-odf inversion problem of texture goniometry by largescale mathematical programming

    No full text
    • …
    corecore