85 research outputs found

    Monthly hydrometeorological ensemble prediction of streamflow droughts and corresponding drought indices

    Get PDF
    Streamflow droughts, characterized by low runoff as consequence of a drought event, affect numerous aspects of life. Economic sectors that are impacted by low streamflow are, e.g., power production, agriculture, tourism, water quality management and shipping. Those sectors could potentially benefit from forecasts of streamflow drought events, even of short events on the monthly time scales or below. Numerical hydrometeorological models have increasingly been used to forecast low streamflow and have become the focus of recent research. Here, we consider daily ensemble runoff forecasts for the river Thur, which has its source in the Swiss Alps. We focus on the evaluation of low streamflow and of the derived indices as duration, severity and magnitude, characterizing streamflow droughts up to a lead time of one month. <br><br> The ECMWF VarEPS 5-member ensemble reforecast, which covers 18 yr, is used as forcing for the hydrological model PREVAH. A thorough verification reveals that, compared to probabilistic peak-flow forecasts, which show skill up to a lead time of two weeks, forecasts of streamflow droughts are skilful over the entire forecast range of one month. For forecasts at the lower end of the runoff regime, the quality of the initial state seems to be crucial to achieve a good forecast quality in the longer range. It is shown that the states used in this study to initialize forecasts satisfy this requirement. The produced forecasts of streamflow drought indices, derived from the ensemble forecasts, could be beneficially included in a decision-making process. This is valid for probabilistic forecasts of streamflow drought events falling below a daily varying threshold, based on a quantile derived from a runoff climatology. Although the forecasts have a tendency to overpredict streamflow droughts, it is shown that the relative economic value of the ensemble forecasts reaches up to 60%, in case a forecast user is able to take preventive action based on the forecast

    Homogenisation of a gridded snow water equivalent climatology for Alpine terrain: methodology and applications

    Get PDF
    Gridded snow water equivalent (SWE) data sets are valuable for estimating the snow water resources and verify different model systems, e.g. hydrological, land surface or atmospheric models. However, changing data availability represents a considerable challenge when trying to derive consistent time series for SWE products. In an attempt to improve the product consistency, we first evaluated the differences between two climatologies of SWE grids that were calculated on the basis of data from 110 and 203 stations, respectively. The "shorter" climatology (2001–2009) was produced using 203 stations (map203) and the "longer" one (1971–2009) 110 stations (map110). Relative to map203, map110 underestimated SWE, especially at higher elevations and at the end of the winter season. We tested the potential of quantile mapping to compensate for mapping errors in map110 relative to map203. During a 9 yr calibration period from 2001 to 2009, for which both map203 and map110 were available, the method could successfully refine the spatial and temporal SWE representation in map110 by making seasonal, regional and altitude-related distinctions. Expanding the calibration to the full 39 yr showed that the general underestimation of map110 with respect to map203 could be removed for the whole winter. The calibrated SWE maps fitted the reference (map203) well when averaged over regions and time periods, where the mean error is approximately zero. However, deviations between the calibrated maps and map203 were observed at single grid cells and years. When we looked at three different regions in more detail, we found that the calibration had the largest effect in the region with the highest proportion of catchment areas above 2000 m a.s.l. and that the general underestimation of map110 compared to map203 could be removed for the entire snow season. The added value of the calibrated SWE climatology is illustrated with practical examples: the verification of a hydrological model, the estimation of snow resource anomalies and the predictability of runoff through SWE

    A realistic assessment of methods for extracting gene/protein interactions from free text

    Get PDF
    Background: The automated extraction of gene and/or protein interactions from the literature is one of the most important targets of biomedical text mining research. In this paper we present a realistic evaluation of gene/protein interaction mining relevant to potential non-specialist users. Hence we have specifically avoided methods that are complex to install or require reimplementation, and we coupled our chosen extraction methods with a state-of-the-art biomedical named entity tagger. Results: Our results show: that performance across different evaluation corpora is extremely variable; that the use of tagged (as opposed to gold standard) gene and protein names has a significant impact on performance, with a drop in F-score of over 20 percentage points being commonplace; and that a simple keyword-based benchmark algorithm when coupled with a named entity tagger outperforms two of the tools most widely used to extract gene/protein interactions. Conclusion: In terms of availability, ease of use and performance, the potential non-specialist user community interested in automatically extracting gene and/or protein interactions from free text is poorly served by current tools and systems. The public release of extraction tools that are easy to install and use, and that achieve state-of-art levels of performance should be treated as a high priority by the biomedical text mining community

    "EDML1": a chronology for the EPICA deep ice core from Dronning Maud Land, Antarctica, over the last 150 000 years.

    Get PDF
    A chronology called EDML1 has been developed for the EPICA ice core from Dronning Maud Land (EDML). EDML1 is closely interlinked with EDC3, the new chronology for the EPICA ice core from Dome-C (EDC) through a stratigraphic match between EDML and EDC that consists of 322 volcanic match points over the last 128 ka. The EDC3 chronology comprises a glaciological model at EDC, which is constrained and later selectively tuned using primary dating information from EDC as well as from EDML, the latter being transferred using the tight stratigraphic link between the two cores. Finally, EDML1 was built by exporting EDC3 to EDML. For ages younger than 41 ka BP the new synchronized time scale EDML1/EDC3 is based on dated volcanic events and on a match to the Greenlandic ice core chronology GICC05 via <sup>10</sup>Be and methane. The internal consistency between EDML1 and EDC3 is estimated to be typically ~6 years and always less than 450 years over the last 128 ka (always less than 130 years over the last 60 ka), which reflects an unprecedented synchrony of time scales. EDML1 ends at 150 ka BP (2417 m depth) because the match between EDML and EDC becomes ambiguous further down. This hints at a complex ice flow history for the deepest 350 m of the EDML ice core

    Large Scale Application of Neural Network Based Semantic Role Labeling for Automated Relation Extraction from Biomedical Texts

    Get PDF
    To reduce the increasing amount of time spent on literature search in the life sciences, several methods for automated knowledge extraction have been developed. Co-occurrence based approaches can deal with large text corpora like MEDLINE in an acceptable time but are not able to extract any specific type of semantic relation. Semantic relation extraction methods based on syntax trees, on the other hand, are computationally expensive and the interpretation of the generated trees is difficult. Several natural language processing (NLP) approaches for the biomedical domain exist focusing specifically on the detection of a limited set of relation types. For systems biology, generic approaches for the detection of a multitude of relation types which in addition are able to process large text corpora are needed but the number of systems meeting both requirements is very limited. We introduce the use of SENNA (“Semantic Extraction using a Neural Network Architecture”), a fast and accurate neural network based Semantic Role Labeling (SRL) program, for the large scale extraction of semantic relations from the biomedical literature. A comparison of processing times of SENNA and other SRL systems or syntactical parsers used in the biomedical domain revealed that SENNA is the fastest Proposition Bank (PropBank) conforming SRL program currently available. 89 million biomedical sentences were tagged with SENNA on a 100 node cluster within three days. The accuracy of the presented relation extraction approach was evaluated on two test sets of annotated sentences resulting in precision/recall values of 0.71/0.43. We show that the accuracy as well as processing speed of the proposed semantic relation extraction approach is sufficient for its large scale application on biomedical text. The proposed approach is highly generalizable regarding the supported relation types and appears to be especially suited for general-purpose, broad-scale text mining systems. The presented approach bridges the gap between fast, cooccurrence-based approaches lacking semantic relations and highly specialized and computationally demanding NLP approaches

    Linguistic feature analysis for protein interaction extraction

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The rapid growth of the amount of publicly available reports on biomedical experimental results has recently caused a boost of text mining approaches for protein interaction extraction. Most approaches rely implicitly or explicitly on linguistic, i.e., lexical and syntactic, data extracted from text. However, only few attempts have been made to evaluate the contribution of the different feature types. In this work, we contribute to this evaluation by studying the relative importance of deep syntactic features, i.e., grammatical relations, shallow syntactic features (part-of-speech information) and lexical features. For this purpose, we use a recently proposed approach that uses support vector machines with structured kernels.</p> <p>Results</p> <p>Our results reveal that the contribution of the different feature types varies for the different data sets on which the experiments were conducted. The smaller the training corpus compared to the test data, the more important the role of grammatical relations becomes. Moreover, deep syntactic information based classifiers prove to be more robust on heterogeneous texts where no or only limited common vocabulary is shared.</p> <p>Conclusion</p> <p>Our findings suggest that grammatical relations play an important role in the interaction extraction task. Moreover, the net advantage of adding lexical and shallow syntactic features is small related to the number of added features. This implies that efficient classifiers can be built by using only a small fraction of the features that are typically being used in recent approaches.</p

    Comparative analysis of five protein-protein interaction corpora

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Growing interest in the application of natural language processing methods to biomedical text has led to an increasing number of corpora and methods targeting protein-protein interaction (PPI) extraction. However, there is no general consensus regarding PPI annotation and consequently resources are largely incompatible and methods are difficult to evaluate.</p> <p>Results</p> <p>We present the first comparative evaluation of the diverse PPI corpora, performing quantitative evaluation using two separate information extraction methods as well as detailed statistical and qualitative analyses of their properties. For the evaluation, we unify the corpus PPI annotations to a shared level of information, consisting of undirected, untyped binary interactions of non-static types with no identification of the words specifying the interaction, no negations, and no interaction certainty.</p> <p>We find that the F-score performance of a state-of-the-art PPI extraction method varies on average 19 percentage units and in some cases over 30 percentage units between the different evaluated corpora. The differences stemming from the choice of corpus can thus be substantially larger than differences between the performance of PPI extraction methods, which suggests definite limits on the ability to compare methods evaluated on different resources. We analyse a number of potential sources for these differences and identify factors explaining approximately half of the variance. We further suggest ways in which the difficulty of the PPI extraction tasks codified by different corpora can be determined to advance comparability. Our analysis also identifies points of agreement and disagreement in PPI corpus annotation that are rarely explicitly stated by the authors of the corpora.</p> <p>Conclusions</p> <p>Our comparative analysis uncovers key similarities and differences between the diverse PPI corpora, thus taking an important step towards standardization. In the course of this study we have created a major practical contribution in converting the corpora into a shared format. The conversion software is freely available at <url>http://mars.cs.utu.fi/PPICorpora</url>.</p

    eGIFT: Mining Gene Information from the Literature

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>With the biomedical literature continually expanding, searching PubMed for information about specific genes becomes increasingly difficult. Not only can thousands of results be returned, but gene name ambiguity leads to many irrelevant hits. As a result, it is difficult for life scientists and gene curators to rapidly get an overall picture about a specific gene from documents that mention its names and synonyms.</p> <p>Results</p> <p>In this paper, we present eGIFT (<url>http://biotm.cis.udel.edu/eGIFT</url>), a web-based tool that associates informative terms, called <it>i</it>Terms, and sentences containing them, with genes. To associate <it>i</it>Terms with a gene, eGIFT ranks <it>i</it>Terms about the gene, based on a score which compares the frequency of occurrence of a term in the gene's literature to its frequency of occurrence in documents about genes in general. To retrieve a gene's documents (Medline abstracts), eGIFT considers all gene names, aliases, and synonyms. Since many of the gene names can be ambiguous, eGIFT applies a disambiguation step to remove matches that do not correspond to this gene. Another additional filtering process is applied to retain those abstracts that focus on the gene rather than mention it in passing. eGIFT's information for a gene is pre-computed and users of eGIFT can search for genes by using a name or an EntrezGene identifier. <it>i</it>Terms are grouped into different categories to facilitate a quick inspection. eGIFT also links an <it>i</it>Term to sentences mentioning the term to allow users to see the relation between the <it>i</it>Term and the gene. We evaluated the precision and recall of eGIFT's <it>i</it>Terms for 40 genes; between 88% and 94% of the <it>i</it>Terms were marked as salient by our evaluators, and 94% of the UniProtKB keywords for these genes were also identified by eGIFT as <it>i</it>Terms.</p> <p>Conclusions</p> <p>Our evaluations suggest that <it>i</it>Terms capture highly-relevant aspects of genes. Furthermore, by showing sentences containing these terms, eGIFT can provide a quick description of a specific gene. eGIFT helps not only life scientists survey results of high-throughput experiments, but also annotators to find articles describing gene aspects and functions.</p
    corecore