164 research outputs found

    Impact of functional studies on exome sequence variant interpretation in early-onset cardiac conduction system diseases

    Get PDF
    Aims The genetic cause of cardiac conduction system disease (CCSD) has not been fully elucidated. Whole-exome sequencing (WES) can detect various genetic variants; however, the identification of pathogenic variants remains a challenge. We aimed to identify pathogenic or likely pathogenic variants in CCSD patients by using WES and 2015 American College of Medical Genetics and Genomics (ACMG) standards and guidelines as well as evaluating the usefulness of functional studies for determining them. Methods and Results We performed WES of 23 probands diagnosed with early-onset (<65 years) CCSD and analyzed 117 genes linked to arrhythmogenic diseases or cardiomyopathies. We focused on rare variants (minor allele frequency < 0.1%) that were absent from population databases. Five probands had protein truncating variants in EMD and LMNA which were classified as “pathogenic” by 2015 ACMG standards and guidelines. To evaluate the functional changes brought about by these variants, we generated a knock-out zebrafish with CRISPR-mediated insertions or deletions of the EMD or LMNA homologs in zebrafish. The mean heart rate and conduction velocities in the CRISPR/Cas9-injected embryos and F2 generation embryos with homozygous deletions were significantly decreased. Twenty-one variants of uncertain significance were identified in 11 probands. Cellular electrophysiological study and in vivo zebrafish cardiac assay showed that 2 variants in KCNH2 and SCN5A, 4 variants in SCN10A, and 1 variant in MYH6 damaged each gene, which resulted in the change of the clinical significance of them from “Uncertain significance” to “Likely pathogenic” in 6 probands. Conclusions Of 23 CCSD probands, we successfully identified pathogenic or likely pathogenic variants in 11 probands (48%). Functional analyses of a cellular electrophysiological study and in vivo zebrafish cardiac assay might be useful for determining the pathogenicity of rare variants in patients with CCSD. SCN10A may be one of the major genes responsible for CCSD. Translational Perspective Whole-exome sequencing (WES) may be helpful in determining the causes of cardiac conduction system disease (CCSD), however, the identification of pathogenic variants remains a challenge. We performed WES of 23 probands diagnosed with early-onset CCSD, and identified 12 pathogenic or likely pathogenic variants in 11 of these probands (48%) according to the 2015 ACMG standards and guidelines. In this context, functional analyses of a cellular electrophysiological study and in vivo zebrafish cardiac assay might be useful for determining the pathogenicity of rare variants, and SCN10A may be one of the major development factors in CCSD

    Tumor-infiltrating macrophages and dendritic cells in human colorectal cancer: relation to local regulatory T cells, systemic T-cell response against tumor-associated antigens and survival

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Although systemic T-cell responses against tumor antigens and tumor infiltration by T cells have been investigated in colorectal cancer (CRC), the initiation of spontaneous immune responses <it>in situ </it>is not well understood. Macrophages and dendritic cells (DC) play an important role as a link between innate and adaptive immune response. The aim of the present study was to analyze macrophage and DC infiltration in CRC and to investigate whether there is a correlation to systemic T-cell response, regulatory T cell (Treg) infiltration, and survival.</p> <p>Methods</p> <p>Immunohistological staining was performed with nine markers for macrophages and DC (CD68, CD163, S100, CD11c, CD208, CD209, CD123, CD1a, Langerin) in 40 colorectal cancer samples from patients, in whom the state of systemic T-cell responses against tumor-associated antigens (TAA) and Treg infiltration had previously been determined.</p> <p>Results</p> <p>All specimens contained cells positive for CD68, CD163, S100 and CD1a in epithelial tumor tissue and tumor stroma. Only a very few (less than median 3/HPF) CD123+, CD1a+, CD11c+, CD 208+, CD209+, or Langerin+ cells were detected in the specimens. Overall, we found a trend towards increased infiltration by S100-positive DC and a significantly increased number of stromal S100-positive DC in patients without T-cell response. There was an increase of stromal S100 DC and CD163 macrophages in limited disease (S100: 11.1/HPF vs. 7.3/HPF, p = 0.046; CD163: 11.0/HPF vs. 8.1/HPF, p = 0.06). We found a significant, positive correlation between S100-positive DC and FOXP3-positive Tregs. Survival in patients with high DC infiltration was significantly better than that in those with low DC infiltration (p < 0.05). Furthermore, we found a trend towards better survival for increased infiltration with CD163-positive macrophages (p = 0.07).</p> <p>Conclusion</p> <p>The present <it>in situ </it>study adds new data to the discussion on the interaction between the innate and adoptive immune system. Our data strongly support the hypothesis that tumor-infiltrating DC are a key factor at the interface between innate and adaptive immune response in malignant disease. Tumor infiltrating S100-positive DC show an inverse relationship with the systemic antigen-specific T-cell response, a positive correlation with regulatory T cells, and a positive association with survival in CRC. These data put tumor-infiltrating DC at the center of the relevant immune response in CRC.</p

    Halo Excitation of 6^6He in Inelastic and Charge-Exchange Reactions

    Get PDF
    Four-body distorted wave theory appropriate for nucleon-nucleus reactions leading to 3-body continuum excitations of two-neutron Borromean halo nuclei is developed. The peculiarities of the halo bound state and 3-body continuum are fully taken into account by using the method of hyperspherical harmonics. The procedure is applied for A=6 test-bench nuclei; thus we report detailed studies of inclusive cross sections for inelastic 6^6He(p,p')6^6He^* and charge-exchange 6^6Li(n,p)6^6He^* reactions at nucleon energy 50 MeV. The theoretical low-energy spectra exhibit two resonance-like structures. The first (narrow) is the excitation of the well-known 2+2^+ three-body resonance. The second (broad) bump is a composition of overlapping soft modes of multipolarities 1,2+,1+,0+1^-, 2^+, 1^+, 0^+ whose relative weights depend on transferred momentum and reaction type. Inelastic scattering is the most selective tool for studying the soft dipole excitation mode.Comment: Submitted to Phys. Rev. C., 11 figures using eps

    Lindblad master equation approach to superconductivity in open quantum systems

    Get PDF
    We consider an open quantum Fermi-system which consists of a single degenerate level with pairing interactions embedded into a superconducting bath. The time evolution of the reduced density matrix for the system is given by Linblad master equation, where the dissipators describe exchange of Bogoliubov quasiparticles with the bath. We obtain fixed points of the time evolution equation for the covariance matrix and study their stability by analyzing full dynamics of the order parameter.Comment: 7 pages, 2 pdf figure

    Design of experiments to study the impact of process parameters on droplet size and development of non-invasive imaging techniques in tablet coating

    Get PDF
    Atomisation of an aqueous solution for tablet film coating is a complex process with multiple factors determining droplet formation and properties. The importance of droplet size for an efficient process and a high quality final product has been noted in the literature, with smaller droplets reported to produce smoother, more homogenous coatings whilst simultaneously avoiding the risk of damage through over-wetting of the tablet core. In this work the effect of droplet size on tablet film coat characteristics was investigated using X-ray microcomputed tomography (XμCT) and confocal laser scanning microscopy (CLSM). A quality by design approach utilising design of experiments (DOE) was used to optimise the conditions necessary for production of droplets at a small (20 μm) and large (70 μm) droplet size. Droplet size distribution was measured using real-time laser diffraction and the volume median diameter taken as a response. DOE yielded information on the relationship three critical process parameters: pump rate, atomisation pressure and coating-polymer concentration, had upon droplet size. The model generated was robust, scoring highly for model fit (R2 = 0.977), predictability (Q2 = 0.837), validity and reproducibility. Modelling confirmed that all parameters had either a linear or quadratic effect on droplet size and revealed an interaction between pump rate and atomisation pressure. Fluidised bed coating of tablet cores was performed with either small or large droplets followed by CLSM and XμCT imaging. Addition of commonly used contrast materials to the coating solution improved visualisation of the coating by XμCT, showing the coat as a discrete section of the overall tablet. Imaging provided qualitative and quantitative evidence revealing that smaller droplets formed thinner, more uniform and less porous film coats
    corecore