19 research outputs found

    Pseudotumor cerebri and lung cancer-associated jugular vein thrombosis: Role of anatomical variations of torcular herophili

    No full text
    A 71-year-old male appeared at the facility complaining of disturbance of consciousness and bilateral papilledema. The laboratory test revealed anemia and coagulation abnormality. A physical examination and magnetic resonance imaging (MRI) of the brain with and without gadolinium showed no abnormalities. A lumbar puncture showed a high pressure, but a normal cerebrospinal fluid (CSF) cell count. Cerebral angiography showed no morphological abnormalities, but it revealed an asymmetric right dominant type of confluence of the sinuses with the partially-communicating left transverse sinus in the late phase. Furthermore, there was a delay in the cerebral circulation time (CCT). Subsequently, venography and ultrasonography revealed right internal jugular vein thrombosis associated with lung cancer. The patient recovered from the disturbance of consciousness immediately after an emergency ventriculoperitoneal shunt and anticoagulation therapy. This case was diagnosed as secondary pseudotumor cerebri (PTC). In order to facilitate the early detection of secondary PTC, it is important to take note of symptoms of intracranial hypertension with no remarkable intracranial lesions and to consider the possibility of PTC, especially in the patients with high risk factors for coagulopathy including lung cancer. Keywords: Cerebral circulation time, Confluence of sinuses (torcular Herophili), Idiopathic intracranial hypertension, Jugular vein thrombosis, Lung cancer, Pseudotumor cerebr

    Anterograde trans-neuronal labeling of striatal interneurons in relation to dopamine neurons in the substantia nigra pars compacta

    Get PDF
    Recent advances in neural tracing have unveiled numerous neural circuits characterized by brain region and cell type specificity, illuminating the underpinnings of specific functions and behaviors. Dopaminergic (DA) neurons in the midbrain are highly heterogeneous in terms of gene and protein expression and axonal projections. Different cell types within the substantia nigra pars compacta (SNc) tend to project to the striatum in a cell-type-dependent manner characterized by specific topography. Given the wide and dense distribution of DA axons, coupled with a combination of synaptic and volume transmission, it remains unclear how DA release is spatially and temporally regulated, to appropriately achieve specific behaviors and functions. Our hypothesis posits that hidden rules governing synapse formation between pre-synaptic DA neuron types and striatal neuron types may modulate the effect of DA at a single-cell level. To address this conjecture, we employed adeno-associated virus serotype 1 (AAV1) to visualize the neural circuitry of DA neurons. AAV1 has emerged as a potent anatomical instrument capable of labeling and visualizing pre- and post-synaptic neurons simultaneously through anterograde trans-synaptic labeling. First, AAV1-Cre was injected into the SNc, resulting in Cre expression in both medium spiny neurons and interneurons in the striatum. Due to the potential occurrence of the retrograde transfer of AAV1, only striatal interneurons were considered for trans-synaptic or trans-neuronal labeling. Interneuron types expressing parvalbumin, choline acetyltransferase, somatostatin, or nitrogen oxide synthase exhibited Cre expression. Using a combination of AAV1-Cre and Cre-driven fluorophore expressing AAVs, striatal interneurons and the axons originating from the SNc were visualized in distinct colors. Using immunofluorescence against neurotransmitter transporters, almost all axons in the striatum visualized using this approach were confirmed to be dopaminergic. Moreover, individual DA axons established multiple appositions on the somata and proximal dendrites of interneurons. This finding suggests that irrespective of the extensive and widespread axonal arborization of DA neurons, a particular DA neuron may exert a significant influence on specific interneurons. Thus, AAV1-based labeling of the DA system can be a valuable tool to uncover the concealed rules governing these intricate relationships

    Supramammillary Nucleus Afferents to the Dentate Gyrus Co-release Glutamate and GABA and Potentiate Granule Cell Output

    No full text
    Summary: The supramammillary nucleus (SuM) of the hypothalamus projects to the dentate gyrus (DG) and the CA2 region of the hippocampus. Although the SuM-to-hippocampus circuits have been implicated in spatial and emotional memory formation, little is known about precise neural connections between the SuM and hippocampus. Here, we report that axons of SuM neurons make monosynaptic connections to granule cells (GCs) and GABAergic interneurons, but not to hilar mossy cells, in the DG and co-release glutamate and γ-aminobutyric acid (GABA) at these synapses. Although inputs from the SuM can excite some interneurons, the inputs alone fail to generate spikes in GCs. However, despite the insufficient excitatory drive and GABAergic co-transmission, SuM inputs have net excitatory effects on GCs and can potentiate GC firing when temporally associated with perforant path inputs. Our results indicate that the SuM influences DG information processing by modulating GC outputs. : The supramammillary nucleus (SuM)-to-hippocampus network is implicated in spatial and emotional memory formation, but little is known about precise neural connections. Hashimotodani et al. show that SuM afferents to the dentate gyrus co-release glutamate and GABA, evoke monosynaptic responses in granule cells (GCs) and GABAergic interneurons, and facilitate GC output. Keywords: hippocampus, dentate gyrus, supramammillary nucleus, co-release, granule cell, interneuron, mossy cell, glutamate, GABA, perforant pat

    Cell type-specific inhibitory inputs to dendritic and somatic compartments of parvalbumin-expressing neocortical interneuron.

    Get PDF
    Parvalbumin (PV)-producing fast-spiking neurons are well known to generate gamma oscillation by mutual chemical and electrical connections in the neocortex. Although it was clearly demonstrated that PV neurons form a dense gap junction network with each other not only at the proximal sites but also at the distal dendrites, comprehensive quantitative data on the chemical connections are still lacking. To elucidate the connectivity, we investigated inhibitory inputs to PV neurons in the somatosensory cortex, using the transgenic mice in which the dendrites and cell bodies of PV neurons were clearly visualized. We first examined GABAergic inputs to PV neurons by labeling postsynaptic and presynaptic sites with the immunoreactivities for gephyrin and vesicular GABA transporter. The density of GABAergic inputs was highest on the cell bodies, and almost linearly decreased to the distal dendrites. We then investigated inhibitory inputs from three distinct subgroups of GABAergic interneurons by visualizing the axon terminals immunopositive for PV, somatostatin (SOM), or vasoactive intestinal polypeptide (VIP). PV and SOM inputs were frequently located on the dendrites with the ratio of 2.5:1, but much less on the cell bodies. By contrast, VIP inputs clearly preferred the cell bodies to the dendrites. Consequently, the dendritic and somatic compartments of PV neurons received ∼60 and 62% of inhibitory inputs from PV and VIP neurons, respectively. This compartmental organization of inhibitory inputs suggests that PV neurons, together with gap junctions, constitute mutual connections at the dendrites, and that their activities are negatively controlled by the somatic inputs of VIP neurons

    Image_1_Anterograde trans-neuronal labeling of striatal interneurons in relation to dopamine neurons in the substantia nigra pars compacta.tif

    No full text
    Recent advances in neural tracing have unveiled numerous neural circuits characterized by brain region and cell type specificity, illuminating the underpinnings of specific functions and behaviors. Dopaminergic (DA) neurons in the midbrain are highly heterogeneous in terms of gene and protein expression and axonal projections. Different cell types within the substantia nigra pars compacta (SNc) tend to project to the striatum in a cell-type-dependent manner characterized by specific topography. Given the wide and dense distribution of DA axons, coupled with a combination of synaptic and volume transmission, it remains unclear how DA release is spatially and temporally regulated, to appropriately achieve specific behaviors and functions. Our hypothesis posits that hidden rules governing synapse formation between pre-synaptic DA neuron types and striatal neuron types may modulate the effect of DA at a single-cell level. To address this conjecture, we employed adeno-associated virus serotype 1 (AAV1) to visualize the neural circuitry of DA neurons. AAV1 has emerged as a potent anatomical instrument capable of labeling and visualizing pre- and post-synaptic neurons simultaneously through anterograde trans-synaptic labeling. First, AAV1-Cre was injected into the SNc, resulting in Cre expression in both medium spiny neurons and interneurons in the striatum. Due to the potential occurrence of the retrograde transfer of AAV1, only striatal interneurons were considered for trans-synaptic or trans-neuronal labeling. Interneuron types expressing parvalbumin, choline acetyltransferase, somatostatin, or nitrogen oxide synthase exhibited Cre expression. Using a combination of AAV1-Cre and Cre-driven fluorophore expressing AAVs, striatal interneurons and the axons originating from the SNc were visualized in distinct colors. Using immunofluorescence against neurotransmitter transporters, almost all axons in the striatum visualized using this approach were confirmed to be dopaminergic. Moreover, individual DA axons established multiple appositions on the somata and proximal dendrites of interneurons. This finding suggests that irrespective of the extensive and widespread axonal arborization of DA neurons, a particular DA neuron may exert a significant influence on specific interneurons. Thus, AAV1-based labeling of the DA system can be a valuable tool to uncover the concealed rules governing these intricate relationships.</p

    A morphological analysis of thalamocortical axon fibers of rat posterior thalamic nuclei: a single neuron tracing study with viral vectors.

    Get PDF
    The rostral sector of the posterior thalamic nuclei (POm) is, together with the ventral posterior nuclei (VP), involved in somatosensory information processing in rodents. The POm receives inputs from the spinal cord and trigeminal nuclei and projects to the primary somatosensory (S1) cortex and other cortical areas. Although thalamocortical axons of single VP neurons are well known to innervate layer (L) 4 of the S1 cortex with distinct columnar organization, those of POm neurons have not been elucidated yet. In the present study, we investigated complete axonal and dendritic arborizations of single POm neurons in rats by visualizing the processes with Sindbis viruses expressing membrane-targeted fluorescent protein. When we divided the POm into anterior and posterior parts according to calbindin immunoreactivity, dendrites of posterior POm neurons were wider but less numerous than those of anterior neurons. More interestingly, axon fibers of anterior POm neurons were preferentially distributed in L5 of the S1 cortex, whereas those of posterior neurons were principally spread in L1 with wider and sparser arborization than those of anterior neurons. These results suggest that the POm is functionally segregated into anterior and posterior parts and that the 2 parts may play different roles in somatosensory information processing

    Conservation of the Direct and Indirect Pathway Dichotomy in Mouse Caudal Striatum With Uneven Distribution of Dopamine Receptor D1-and D2-Expressing Neurons

    No full text
    The striatum is one of the key nuclei for adequate control of voluntary behaviors and reinforcement learning. Two striatal projection neuron types, expressing either dopamine receptor D1 (D1R) or dopamine receptor D2 (D2R) constitute two independent output routes: the direct or indirect pathways, respectively. These pathways co-work in balance to achieve coordinated behavior. Two projection neuron types are equivalently intermingled in most striatal space. However, recent studies revealed two atypical zones in the caudal striatum: the zone in which D1R-neurons are the minor population (D1R-poor zone) and that in which D2R-neurons are the minority (D2R-poor zone). It remains obscure as to whether these imbalanced zones have similar properties on axonal projections and electrophysiology compared to other striatal regions. Based on morphological experiments in mice using immunofluorescence, in situ hybridization, and neural tracing, here, we revealed that the poor zones densely projected to the globus pallidus and substantia nigra pars lateralis, with a few collaterals in substantia nigra pars reticulata and compacta. Similar to that in other striatal regions, D1R-neurons were the direct pathway neurons. We also showed that the membrane properties of projection neurons in the poor zones were largely similar to those in the conventional striatum using in vitro electrophysiological recording. In addition, the poor zones existed irrespective of the age or sex of mice. We also identified the poor zones in the common marmoset as well as other rodents. These results suggest that the poor zones in the caudal striatum follow the conventional projection patterns irrespective of the imbalanced distribution of projection neurons. The poor zones could be an innate structure and common in mammals. The unique striatal zones possessing highly restricted projections could relate to functions different from those of motor-related striatum

    Local connections of excitatory neurons to corticothalamic neurons in the rat barrel cortex.

    Get PDF
    Corticothalamic projection neurons in the cerebral cortex constitute an important component of the thalamocortical reciprocal circuit, an essential input/output organization for cortical information processing. However, the spatial organization of local excitatory connections to corticothalamic neurons is only partially understood. In the present study, we first developed an adenovirus vector expressing somatodendritic membrane-targeted green fluorescent protein. After injection of the adenovirus vector into the ventrobasal thalamic complex, a band of layer (L) 6 corticothalamic neurons in the rat barrel cortex were retrogradely labeled. In addition to their cell bodies, fine dendritic spines of corticothalamic neurons were well visualized without the labeling of their axon collaterals or thalamocortical axons. In cortical slices containing retrogradely labeled L6 corticothalamic neurons, we intracellularly stained single pyramidal/spiny neurons of L2-6. We examined the spatial distribution of contact sites between the local axon collaterals of each pyramidal neuron and the dendrites of corticothalamic neurons. We found that corticothalamic neurons received strong and focused connections from L4 neurons just above them, and that the most numerous nearby and distant sources of local excitatory connections to corticothalamic neurons were corticothalamic neurons themselves and L6 putative corticocortical neurons, respectively. These results suggest that L4 neurons may serve as an important source of local excitatory inputs in shaping the cortical modulation of thalamic activity
    corecore