21 research outputs found

    Targeting critical kinases and anti-apoptotic molecules overcomes steroid resistance in MLL-rearranged leukaemia.

    Get PDF
    BACKGROUND: Acute lymphoblastic leukaemia with mixed lineage leukaemia gene rearrangement (MLL-ALL) frequently affects infants and is associated with a poor prognosis. Primary refractory and relapsed disease due to resistance to glucocorticoids (GCs) remains a substantial hurdle to improving clinical outcomes. In this study, we aimed to overcome GC resistance of MLL-ALL. METHODS: Using leukaemia patient specimens, we performed bioinformatic analyses to identify target genes/pathways. To test inhibition of target pathways in vivo, we created pre-clinical therapeutic mouse patient-derived xenograft (PDX)-models by transplanting human MLL-ALL leukaemia initiating cells (LIC) into immune-deficient NSG mice. Finally, we conducted B-cell lymphoma-2 (BCL-2) homology domain 3 (BH3) profiling to identify BH3 peptides responsible for treatment resistance in MLL-leukaemia. FINDINGS: Src family kinases (SFKs) and Fms-like tyrosine kinase 3 (FLT3) signaling pathway were over-represented in MLL-ALL cells. PDX-models of infant MLL- ALL recapitulated GC-resistance in vivo but RK-20449, an inhibitor of SFKs and FLT3 eliminated human MLL-ALL cells in vivo, overcoming GC-resistance. Further, we identified BCL-2 dependence as a mechanism of treatment resistance in MLL-ALL through BH3 profiling. Furthermore, MLL-ALL cells resistant to RK-20449 treatment were dependent on the anti-apoptotic BCL-2 protein for their survival. Combined inhibition of SFKs/FLT3 by RK-20449 and of BCL-2 by ABT-199 led to substantial elimination of MLL-ALL cells in vitro and in vivo. Triple treatment combining GCs, RK-20449 and ABT-199 resulted in complete elimination of MLL-ALL cells in vivo. INTERPRETATION: SFKs/FLT3 signaling pathways are promising targets for treatment of treatment-resistant MLL-ALL. Combined inhibition of these kinase pathways and anti-apoptotic BCL-2 successfully eliminated highly resistant MLL-ALL and demonstrated a new treatment strategy for treatment-resistant poor-outcome MLL-ALL. FUNDING: This study was supported by RIKEN (RIKEN President\u27s Discretionary Grant) for FI, Japan Agency for Medical Research and Development (the Basic Science and Platform Technology Program for Innovative Biological Medicine for FI and by NIH CA034196 for LDS. The funders had no role in the study design, data collection, data analysis, interpretation nor writing of the report

    High-Performance Computing Service Over the Internet for Intraoperative Image Processing

    No full text
    Abstract — This paper presents a framework for a cluster system that is suited for high-resolution image processing over the Internet during surgery. The system realizes high performance computing (HPC) assisted surgery, which allows surgeons utilize HPC resources remote from operating room. One application available in the system is an intraoperative estimator for the range of motion (ROM) adjustment in total hip replacement (THR) surgery. In order to perform this compute-intensive estimation during surgery, we parallelize the ROM estimator on a cluster of 64 PCs, each with two CPUs. Acceleration techniques such as dynamic load balancing and data compression methods are incorporated into the system. The system also provides a remote access service over the Internet with a secure execution environment. We applied the system to an actual THR surgery performed at Osaka University Hospital and confirmed that it realizes intraoperative ROM estimation without degrading the resolution of images and limiting the area for estimations. Index Terms — High performance computing, medical image processing, range of motion estimation, computer assisted surgery, cluster computing, message passing program. I

    BCL2 inhibitor ABT-199 and JNK inhibitor SP600125 exhibit synergistic cytotoxicity against imatinib-resistant Ph+ ALL cells

    No full text
    Imatinib (IMT), a specific tyrosine kinase inhibitor (TKI), has drastically changed the treatment strategy for Ph+ ALL (Philadelphia chromosome-positive acute lymphoblastic leukemia). However, TKI resistance remains a serious problem for patient prognosis. Here, a Ph+ ALL cell line NphA2 and the IMT-resistant subline NphA2/STIR were analyzed to identify a potential novel treatment strategy. We also examined other Ph+ ALL cells, MR87 and its IMT-resistant subline, MR87/STIR. IMT induced apoptosis of NphA2 and MR87 but had no effect on resistant sublines. Increased phosphorylated ERK and BCL2, but not BCL-XL, were observed in NphA2/STIR compared with NphA2. NphA2/STIR but not NphA2 was moderately sensitive to U0126, an ERK inhibitor. Interestingly, SP600125, a JNK inhibitor, was potent in cell growth inhibition and apoptosis induction of both parental and IMT-resistant NphA2 and MR87 cells. Moreover, NphA2 and MR87 and their IMT-resistant sublines were sensitive to ABT-199, a specific BCL2 inhibitor. The combination of SP600125 and ABT-199 synergistically suppressed both parental and IMT-resistant cells, including one with T315I mutation, suggesting that Ph+ ALL exhibits high sensitivity to ABT-199 and SP600125 regardless of TKI resistance. This combination might be a possible therapeutic strategy for Ph+ ALL in the future. Keywords: Ph+ ALL, Imatinib-resistance, JNK inhibitor, BCL2 inhibitor, Synergistic actio
    corecore