326 research outputs found

    White Lines and 3d-Occupancy for the 3d Transition-Metal Oxides

    Get PDF
    Electron energy-loss spectrometry was employed to measure the white lines at the L23 absorption edges of the 3d transition-metal oxides and lithium transition-metal oxides. The white-line ratio (L3/L2) was found to increase between d^0 and d^5 and decrease between d^5 and d^10, consistent with previous results for the transition metals and their oxides. The intensities of the white lines, normalized to the post-edge background, are linear for the 3d transition-metal oxides and lithium transition-metal oxides. An empirical correlation between normalized white-line intensity and 3d occupancy is established. It provides a method for measuring changes in the 3d-state occupancy. As an example, this empirical relationship is used to measure changes in the transition-metal valences of Li_{1-x}Ni_{0.8}Co_{0.2}O_2 in the range of 0 < x < 0.64. In these experiments the 3d occupancy of the nickel ion decreased upon lithium deintercalation, while the cobalt valence remained constant.Comment: 6 pages, 7 figure

    The heterosexual human immunodeficiency virus type 1 epidemic in Thailand is caused by an intersubtype (A/E) recombinant of African origin

    Get PDF
    Since 1989, human immunodeficiency virus type 1 (HIV-1) has spread explosively through the heterosexual population in Thailand. This epidemic is caused primarily by viruses classified as "subtype E", which, on the basis of limited sequence comparisons, appear to represent hybrids of subtypes A (gag) and E (env). However, the true evolutionary origins of "subtype E" viruses are still obscure since no complete genomes have been analyzed, and only one full-length subtype A sequence has been available for phylogenetic comparison. In this study, we determined full-length proviral sequences for "subtype E" viruses from Thailand (93TH253) and the Central African Republic (90CR402) and for a subtype A virus from Uganda (92UG037). We also sequenced the long terminal repeat (LTR) regions from 16 virus strains representing clades A, C, E, F, and G. Detailed phylogenetic analyses of these sequences indicated that "subtype E" viruses do indeed represent A/E recombinants with multiple points of crossover along their genomes. The extracellular portion of env, parts of vif and vpr, as well as most of the LTR are of subtype E origin, whereas the remainder of the genome is of subtype A origin. The possibility that the discordant phylogenetic positions of "subtype E" viruses in gag- and env-derived trees are the result of unusual rates or patterns of evolution was also considered but was ruled out on the basis of two lines of evidence: (i) phylogenetic trees constructed for synonymous and nonsynonymous substitutions yielded the same discordant branching orders for "subtype E" gag and env gene sequences, thus excluding selection-driven evolution, and (ii) multiple crossovers in the viral genome are most consistent with the copy choice model of recombination and have been observed in other documented examples of HIV-1 intersubtype recombination. Thai and CAR "subtype E" viruses exhibited the same pattern of A/E mosaicism, indicating that the recombination event occurred in Africa prior to the spread of virus to Asia. Finally, all "subtype E" viruses were found to contain a distinctive two-nucleotide bulge in their transactivation response (TAR) elements. This feature was present only in viruses which also contained a subtype A 5' pol region (i.e., subtype A viruses or A/D and A/E recombinants), raising the possibility of a functional linkage between the TAR region and the polymerase. The implications of epidemic spread of a recombinant HIV-1 strain to viral natural history and vaccine development are discussed

    Enhancement of the electronic contribution to the low temperature specific heat of Fe/Cr magnetic multilayer

    Full text link
    We measured the low temperature specific heat of a sputtered (Fe23A˚/Cr12A˚)33(Fe_{23\AA}/Cr_{12\AA})_{33} magnetic multilayer, as well as separate 1000A˚1000\AA thick Fe and Cr films. Magnetoresistance and magnetization measurements on the multilayer demonstrated antiparallel coupling between the Fe layers. Using microcalorimeters made in our group, we measured the specific heat for 4<T<30K4<T<30 K and in magnetic fields up to 8T8 T for the multilayer. The low temperature electronic specific heat coefficient of the multilayer in the temperature range 4<T<14K4<T<14 K is γML=8.4mJ/K2gat\gamma_{ML}=8.4 mJ/K^{2}g-at. This is significantly larger than that measured for the Fe or Cr films (5.4 and 3.5mJ/K2mol3.5 mJ/K^{2}mol respectively). No magnetic field dependence of γML\gamma_{ML} was observed up to 8T8 T. These results can be explained by a softening of the phonon modes observed in the same data and the presence of an Fe-Cr alloy phase at the interfaces.Comment: 20 pages, 5 figure

    HIV Types, Groups, Subtypes and Recombinant Forms: Errors in Replication, Selection Pressure and Quasispecies

    Get PDF
    HIV-1 is a chimpanzee virus which was transmitted to humans by several zoonotic events resulting in infection with HIV-1 groups M P, and in parallel transmission events from sooty mangabey monkey viruses leading to infections with HIV-2 groups A H. Both viruses have circulated in the human population for about 80 years. In the infected patient, HIV mutates, and by elimination of some of the viruses by the action of the immune system individual quasispecies are formed. Along with the selection of the fittest viruses, mutation and recombination after superinfection with HIV from different groups or subtypes have resulted in the diversity of their patterns of geographic distribution. Despite the high variability observed, some essential parts of the HIV genome are highly conserved. Viral diversity is further facilitated in some parts of the HIV genome by drug selection pressure and may also be enhanced by different genetic factors, including HLA in patients from different regions of the world. Viral and human genetic factors influence pathogenesis. Viral genetic factors are proteins such as Tat, Vif and Rev. Human genetic factors associated with a better clinical outcome are proteins such as APOBEC, langerin, tetherin and chemokine receptor 5 (CCR5) and HLA B27, B57, DRB1{*}1303, KIR and PARD3B. Copyright (C) 2012 S. Karger AG, Base

    Application and Validation of Case-Finding Algorithms for Identifying Individuals with Human Immunodeficiency Virus from Administrative Data in British Columbia, Canada

    Get PDF
    Objective To define a population-level cohort of individuals infected with the human immunodeficiency virus (HIV) in the province of British Columbia from available registries and administrative datasets using a validated case-finding algorithm. Methods Individuals were identified for possible cohort inclusion from the BC Centre for Excellence in HIV/AIDS (CfE) drug treatment program (antiretroviral therapy) and laboratory testing datasets (plasma viral load (pVL) and CD4 diagnostic test results), the BC Centre for Disease Control (CDC) provincial HIV surveillance database (positive HIV tests), as well as databases held by the BC Ministry of Health (MoH); the Discharge Abstract Database (hospitalizations), the Medical Services Plan (physician billing) and PharmaNet databases (additional HIV-related medications). A validated case-finding algorithm was applied to distinguish true HIV cases from those likely to have been misclassified. The sensitivity of the algorithms was assessed as the proportion of confirmed cases (those with records in the CfE, CDC and MoH databases) positively identified by each algorithm. A priori hypotheses were generated and tested to verify excluded cases. Results A total of 25,673 individuals were identified as having at least one HIV-related health record. Among 9,454 unconfirmed cases, the selected case-finding algorithm identified 849 individuals believed to be HIV-positive. The sensitivity of this algorithm among confirmed cases was 88%. Those excluded from the cohort were more likely to be female (44.4% vs. 22.5%; p&lt;0.01), had a lower mortality rate (2.18 per 100 person years (100PY) vs. 3.14/100PY; p&lt;0.01), and had lower median rates of health service utilization (days of medications dispensed: 9745/100PY vs. 10266/100PY; p&lt;0.01; days of inpatient care: 29/100PY vs. 98/100PY; p&lt;0.01; physician billings: 602/100PY vs. 2,056/100PY; p&lt;0.01). Conclusions The application of validated case-finding algorithms and subsequent hypothesis testing provided a strong framework for defining a population-level cohort of HIV infected people in BC using administrative databases

    A Highly Intensified ART Regimen Induces Long-Term Viral Suppression and Restriction of the Viral Reservoir in a Simian AIDS Model

    Get PDF
    Stably suppressed viremia during ART is essential for establishing reliable simian models for HIV/AIDS. We tested the efficacy of a multidrug ART (highly intensified ART) in a wide range of viremic conditions (103–107 viral RNA copies/mL) in SIVmac251-infected rhesus macaques, and its impact on the viral reservoir. Eleven macaques in the pre-AIDS stage of the disease were treated with a multidrug combination (highly intensified ART) consisting of two nucleosidic/nucleotidic reverse transcriptase inhibitors (emtricitabine and tenofovir), an integrase inhibitor (raltegravir), a protease inhibitor (ritonavir-boosted darunavir) and the CCR5 blocker maraviroc. All animals stably displayed viral loads below the limit of detection of the assay (i.e. <40 RNA copies/mL) after starting highly intensified ART. By increasing the sensitivity of the assay to 3 RNA copies/mL, viral load was still below the limit of detection in all subjects tested. Importantly, viral DNA resulted below the assay detection limit (<2 copies of DNA/5*105 cells) in PBMCs and rectal biopsies of all animals at the end of the follow-up, and in lymph node biopsies from the majority of the study subjects. Moreover, highly intensified ART decreased central/transitional memory, effector memory and activated (HLA-DR+) effector memory CD4+ T-cells in vivo, in line with the role of these subsets as the main cell subpopulations harbouring the virus. Finally, treatment with highly intensified ART at viral load rebound following suspension of a previous anti-reservoir therapy eventually improved the spontaneous containment of viral load following suspension of the second therapeutic cycle, thus leading to a persistent suppression of viremia in the absence of ART. In conclusion, we show, for the first time, complete suppression of viral load by highly intensified ART and a likely associated restriction of the viral reservoir in the macaque AIDS model, making it a useful platform for testing potential cures for AIDS

    Evidence for topological defects in a photoinduced phase transition

    Get PDF
    Upon excitation with an intense ultrafast laser pulse, a symmetry-broken ground state can undergo a non-equilibrium phase transition through pathways dissimilar from those in thermal equilibrium. Determining the mechanism underlying these photo-induced phase transitions (PIPTs) has been a long-standing issue in the study of condensed matter systems. To this end, we investigate the light-induced melting of a unidirectional charge density wave (CDW) material, LaTe3_3. Using a suite of time-resolved probes, we independently track the amplitude and phase dynamics of the CDW. We find that a quick (\sim\,1\,ps) recovery of the CDW amplitude is followed by a slower reestablishment of phase coherence. This longer timescale is dictated by the presence of topological defects: long-range order (LRO) is inhibited and is only restored when the defects annihilate. Our results provide a framework for understanding other PIPTs by identifying the generation of defects as a governing mechanism
    corecore