3,914 research outputs found

    Connection Conditions and the Spectral Family under Singular Potentials

    Get PDF
    To describe a quantum system whose potential is divergent at one point, one must provide proper connection conditions for the wave functions at the singularity. Generalizing the scheme used for point interactions in one dimension, we present a set of connection conditions which are well-defined even if the wave functions and/or their derivatives are divergent at the singularity. Our generalized scheme covers the entire U(2) family of quantizations (self-adjoint Hamiltonians) admitted for the singular system. We use this scheme to examine the spectra of the Coulomb potential V(x)=e2/xV(x) = - e^2 / | x | and the harmonic oscillator with square inverse potential V(x)=(mω2/2)x2+g/x2V(x) = (m \omega^2 / 2) x^2 + g/x^2, and thereby provide a general perspective for these models which have previously been treated with restrictive connection conditions resulting in conflicting spectra. We further show that, for any parity invariant singular potentials V(x)=V(x)V(-x) = V(x), the spectrum is determined solely by the eigenvalues of the characteristic matrix UU(2)U \in U(2).Comment: TeX, 18 page

    Classification of double flag varieties of complexity 0 and 1

    Full text link
    A classification of double flag varieties of complexity 0 and 1 is obtained. An application of this problem to decomposing tensor products of irreducible representations of semisimple Lie groups is considered

    A reduced subduction graph and higher multiplicity in S_n transformation coefficients

    Full text link
    Transformation coefficients between {\it standard} bases for irreducible representations of the symmetric group SnS_n and {\it split} bases adapted to the Sn1×Sn2SnS_{n_1} \times S_{n_2} \subset S_n subgroup (n1+n2=nn_1 +n_2 = n) are considered. We first provide a \emph{selection rule} and an \emph{identity rule} for the subduction coefficients which allow to decrease the number of unknowns and equations arising from the linear method by Pan and Chen. Then, using the {\it reduced subduction graph} approach, we may look at higher multiplicity instances. As a significant example, an orthonormalized solution for the first multiplicity-three case, which occurs in the decomposition of the irreducible representation [4,3,2,1][4,3,2,1] of S10S_{10} into [3,2,1][3,1][3,2,1] \otimes [3,1] of S6×S4S_6 \times S_4, is presented and discussed.Comment: 12 pages, 1 figure, iopart class, Revisited version (several typographical errors have been corrected). Accepted for publication in J. Phys. A: Math. Ge

    Spectroscopy of 19^{19}Ne for the thermonuclear 15^{15}O(α,γ\alpha,\gamma)19^{19}Ne and 18^{18}F(p,αp,\alpha)15^{15}O reaction rates

    Full text link
    Uncertainties in the thermonuclear rates of the 15^{15}O(α,γ\alpha,\gamma)19^{19}Ne and 18^{18}F(p,αp,\alpha)15^{15}O reactions affect model predictions of light curves from type I X-ray bursts and the amount of the observable radioisotope 18^{18}F produced in classical novae, respectively. To address these uncertainties, we have studied the nuclear structure of 19^{19}Ne over Ex=4.05.1E_{x} = 4.0 - 5.1 MeV and 6.17.36.1 - 7.3 MeV using the 19^{19}F(3^{3}He,t)19^{19}Ne reaction. We find the JπJ^{\pi} values of the 4.14 and 4.20 MeV levels to be consistent with 9/29/2^{-} and 7/27/2^{-} respectively, in contrast to previous assumptions. We confirm the recently observed triplet of states around 6.4 MeV, and find evidence that the state at 6.29 MeV, just below the proton threshold, is either broad or a doublet. Our data also suggest that predicted but yet unobserved levels may exist near the 6.86 MeV state. Higher resolution experiments are urgently needed to further clarify the structure of 19^{19}Ne around the proton threshold before a reliable 18^{18}F(p,αp,\alpha)15^{15}O rate for nova models can be determined.Comment: 5 pages, 3 figures, Phys. Rev. C (in press

    Hirzebruch-Milnor classes and Steenbrink spectra of certain projective hypersurfaces

    Full text link
    We show that the Hirzebruch-Milnor class of a projective hypersurface, which gives the difference between the Hirzebruch class and the virtual one, can be calculated by using the Steenbrink spectra of local defining functions of the hypersurface if certain good conditions are satisfied, e.g. in the case of projective hyperplane arrangements, where we can give a more explicit formula. This is a natural continuation of our previous paper on the Hirzebruch-Milnor classes of complete intersections.Comment: 15 pages, Introduction is modifie

    Bound-State Variational Wave Equation For Fermion Systems In QED

    Full text link
    We present a formulation of the Hamiltonian variational method for QED which enables the derivation of relativistic few-fermion wave equation that can account, at least in principle, for interactions to any order of the coupling constant. We derive a relativistic two-fermion wave equation using this approach. The interaction kernel of the equation is shown to be the generalized invariant M-matrix including all orders of Feynman diagrams. The result is obtained rigorously from the underlying QFT for arbitrary mass ratio of the two fermions. Our approach is based on three key points: a reformulation of QED, the variational method, and adiabatic hypothesis. As an application we calculate the one-loop contribution of radiative corrections to the two-fermion binding energy for singlet states with arbitrary principal quantum number nn, and l=J=0l =J=0. Our calculations are carried out in the explicitly covariant Feynman gauge.Comment: 26 page

    Toda Fields on Riemann Surfaces: remarks on the Miura transformation

    Full text link
    We point out that the Miura transformation is related to a holomorphic foliation in a relative flag manifold over a Riemann Surface. Certain differential operators corresponding to a free field description of WW--algebras are thus interpreted as partial connections associated to the foliation.Comment: AmsLatex 1.1, 10 page

    New Approaches to HSCT Multidisciplinary Design and Optimization

    Get PDF
    The successful development of a capable and economically viable high speed civil transport (HSCT) is perhaps one of the most challenging tasks in aeronautics for the next two decades. At its heart it is fundamentally the design of a complex engineered system that has significant societal, environmental and political impacts. As such it presents a formidable challenge to all areas of aeronautics, and it is therefore a particularly appropriate subject for research in multidisciplinary design and optimization (MDO). In fact, it is starkly clear that without the availability of powerful and versatile multidisciplinary design, analysis and optimization methods, the design, construction and operation of im HSCT simply cannot be achieved. The present research project is focused on the development and evaluation of MDO methods that, while broader and more general in scope, are particularly appropriate to the HSCT design problem. The research aims to not only develop the basic methods but also to apply them to relevant examples from the NASA HSCT R&D effort. The research involves a three year effort aimed first at the HSCT MDO problem description, next the development of the problem, and finally a solution to a significant portion of the problem

    Quantum simulations under translational symmetry

    Get PDF
    We investigate the power of quantum systems for the simulation of Hamiltonian time evolutions on a cubic lattice under the constraint of translational invariance. Given a set of translationally invariant local Hamiltonians and short range interactions we determine time evolutions which can and those that can not be simulated. Whereas for general spin systems no finite universal set of generating interactions is shown to exist, universality turns out to be generic for quadratic bosonic and fermionic nearest-neighbor interactions when supplemented by all translationally invariant on-site Hamiltonians.Comment: 9 pages, 2 figures, references added, minor change

    New Approaches to Multidisciplinary Design and Optimization

    Get PDF
    Research under the subject grant is being carried out in a jointly coordinated effort within three laboratories in the School of Aerospace Engineering and the George Woodruff School of Mechanical Engineering. The objectives and results for Year 2 of the research program are summarized. The "Objectives" and "Expected Significance" are taken directly from the Year 2 Proposal presented in October 1994, and "Results" summarize the what has been accomplished this year. A discussion of these results is provided in the following sections. A listing of papers, presentations and reports that acknowledge grant support, either in part or in whole, and that were prepared during this period is provided in an attachment
    corecore