5,191 research outputs found

    Integral Grothendieck-Riemann-Roch theorem

    Full text link
    We show that, in characteristic zero, the obvious integral version of the Grothendieck-Riemann-Roch formula obtained by clearing the denominators of the Todd and Chern characters is true (without having to divide the Chow groups by their torsion subgroups). The proof introduces an alternative to Grothendieck's strategy: we use resolution of singularities and the weak factorization theorem for birational maps.Comment: 24 page

    Schur Q-functions and degeneracy locus formulas for morphisms with symmetries

    Full text link
    We give closed-form formulas for the fundamental classes of degeneracy loci associated with vector bundle maps given locally by (not necessary square) matrices which are symmetric (resp. skew-symmetric) w.r.t. the main diagonal. Our description uses essentially Schur Q-polynomials of a bundle, and is based on a certain push-forward formula for these polynomials in a Grassmann bundle.Comment: 22 pages, AMSTEX, misprints corrected, exposition improved. to appear in the Proceedings of Intersection Theory Conference in Bologna, "Progress in Mathematics", Birkhause

    Stringy K-theory and the Chern character

    Full text link
    For a finite group G acting on a smooth projective variety X, we construct two new G-equivariant rings: first the stringy K-theory of X, and second the stringy cohomology of X. For a smooth Deligne-Mumford stack Y we also construct a new ring called the full orbifold K-theory of Y. For a global quotient Y=[X/G], the ring of G-invariants of the stringy K-theory of X is a subalgebra of the full orbifold K-theory of the the stack Y and is linearly isomorphic to the ``orbifold K-theory'' of Adem-Ruan (and hence Atiyah-Segal), but carries a different, ``quantum,'' product, which respects the natural group grading. We prove there is a ring isomorphism, the stringy Chern character, from stringy K-theory to stringy cohomology, and a ring homomorphism from full orbifold K-theory to Chen-Ruan orbifold cohomology. These Chern characters satisfy Grothendieck-Riemann-Roch for etale maps. We prove that stringy cohomology is isomorphic to Fantechi and Goettsche's construction. Since our constructions do not use complex curves, stable maps, admissible covers, or moduli spaces, our results simplify the definitions of Fantechi-Goettsche's ring, of Chen-Ruan's orbifold cohomology, and of Abramovich-Graber-Vistoli's orbifold Chow. We conclude by showing that a K-theoretic version of Ruan's Hyper-Kaehler Resolution Conjecture holds for symmetric products. Our results hold both in the algebro-geometric category and in the topological category for equivariant almost complex manifolds.Comment: Exposition improved and additional details provided. To appear in Inventiones Mathematica

    Radiation from a Charge Uniformly Accelerated for All Time

    Get PDF
    A recent paper of Singal [Gen. Rel. Grav. 27 (1995), 953-967] argues that a uniformly accelerated particle does not radiate, in contradiction to the consensus of the research literature over the past 30 years. This note points out some questionable aspects of Singal's argument and shows how similar calculations can lead to the opposite conclusion.Comment: LaTeX, 9 pages, to appear in General Relativity and Gravitatio

    Grothendieck groups and a categorification of additive invariants

    Full text link
    A topologically-invariant and additive homology class is mostly not a natural transformation as it is. In this paper we discuss turning such a homology class into a natural transformation; i.e., a "categorification" of it. In a general categorical set-up we introduce a generalized relative Grothendieck group from a cospan of functors of categories and also consider a categorification of additive invariants on objects. As an example, we obtain a general theory of characteristic homology classes of singular varieties.Comment: 27 pages, to appear in International J. Mathematic

    Long-Period Giant Companions to Three Compact, Multiplanet Systems

    Get PDF
    Understanding the relationship between long-period giant planets and multiple smaller short-period planets is critical for formulating a complete picture of planet formation. This work characterizes three such systems. We present Kepler-65, a system with an eccentric (e = 0.28 ± 0.07) giant planet companion discovered via radial velocities (RVs) exterior to a compact, multiply transiting system of sub-Neptune planets. We also use precision RVs to improve mass and radius constraints on two other systems with similar architectures, Kepler-25 and Kepler-68. In Kepler-68 we propose a second exterior giant planet candidate. Finally, we consider the implications of these systems for planet formation models, particularly that the moderate eccentricity in Kepler-65\u27s exterior giant planet did not disrupt its inner system

    Universal and phase covariant superbroadcasting for mixed qubit states

    Full text link
    We describe a general framework to study covariant symmetric broadcasting maps for mixed qubit states. We explicitly derive the optimal N to M superbroadcasting maps, achieving optimal purification of the single-site output copy, in both the universal and the phase covariant cases. We also study the bipartite entanglement properties of the superbroadcast states.Comment: 19 pages, 8 figures, strictly related to quant-ph/0506251 and quant-ph/051015

    Spectroscopy of 19^{19}Ne for the thermonuclear 15^{15}O(α,γ\alpha,\gamma)19^{19}Ne and 18^{18}F(p,αp,\alpha)15^{15}O reaction rates

    Full text link
    Uncertainties in the thermonuclear rates of the 15^{15}O(α,γ\alpha,\gamma)19^{19}Ne and 18^{18}F(p,αp,\alpha)15^{15}O reactions affect model predictions of light curves from type I X-ray bursts and the amount of the observable radioisotope 18^{18}F produced in classical novae, respectively. To address these uncertainties, we have studied the nuclear structure of 19^{19}Ne over Ex=4.0−5.1E_{x} = 4.0 - 5.1 MeV and 6.1−7.36.1 - 7.3 MeV using the 19^{19}F(3^{3}He,t)19^{19}Ne reaction. We find the JπJ^{\pi} values of the 4.14 and 4.20 MeV levels to be consistent with 9/2−9/2^{-} and 7/2−7/2^{-} respectively, in contrast to previous assumptions. We confirm the recently observed triplet of states around 6.4 MeV, and find evidence that the state at 6.29 MeV, just below the proton threshold, is either broad or a doublet. Our data also suggest that predicted but yet unobserved levels may exist near the 6.86 MeV state. Higher resolution experiments are urgently needed to further clarify the structure of 19^{19}Ne around the proton threshold before a reliable 18^{18}F(p,αp,\alpha)15^{15}O rate for nova models can be determined.Comment: 5 pages, 3 figures, Phys. Rev. C (in press

    On the integral cohomology of smooth toric varieties

    Full text link
    Let XΣX_\Sigma be a smooth, not necessarily compact toric variety. We show that a certain complex, defined in terms of the fan Σ\Sigma, computes the integral cohomology of XΣX_\Sigma, including the module structure over the homology of the torus. In some cases we can also give the product. As a corollary we obtain that the cycle map from Chow groups to integral Borel-Moore homology is split injective for smooth toric varieties. Another result is that the differential algebra of singular cochains on the Borel construction of XΣX_\Sigma is formal.Comment: 10 page
    • …
    corecore