281 research outputs found

    Qualitative model-based diagnostics for rocket systems

    Get PDF
    A diagnostic software package is currently being developed at NASA LeRC that utilizes qualitative model-based reasoning techniques. These techniques can provide diagnostic information about the operational condition of the modeled rocket engine system or subsystem. The diagnostic package combines a qualitative model solver with a constraint suspension algorithm. The constraint suspension algorithm directs the solver's operation to provide valuable fault isolation information about the modeled system. A qualitative model of the Space Shuttle Main Engine's oxidizer supply components was generated. A diagnostic application based on this qualitative model was constructed to process four test cases: three numerical simulations and one actual test firing. The diagnostic tool's fault isolation output compared favorably with the input fault condition

    Structure of the interleukin-2 tyrosine kinase Src homology 2 domain; comparison between X-ray and NMR-derived structures

    Get PDF
    The crystal structure of the interleukin-2 tyrosine kinase Src homology domain (Itk SH2) is described and it is found that unlike in studies of this domain using NMR spectroscopy, cis-trans-prolyl isomerization is not readily detected in the crystal structure. Based on similarities between the Itk SH2 crystal form and the cis form of the Itk SH2 NMR structure, it is concluded that it is likely that the prolyl imide bond at least in part adopts the cis conformation in the crystal form. However, the lack of high-resolution data and the dynamic nature of the proline-containing loop mean that the precise imide-bond conformation cannot be determined and prolyl cis-trans isomerization in the crystal cannot be ruled out. Given the preponderance of structures that have been solved by X-ray crystallography in the Protein Data Bank, this result supports the notion that prolyl isomerization in folded proteins has been underestimated among known structures. Interestingly, while the precise status of the proline residue is ambiguous, Itk SH2 crystallizes as a domain-swapped dimer. The domain-swapped structure of Itk SH2 is similar to the domain-swapped SH2 domains of Grb2 and Nck, with domain swapping occurring at the β-meander region of all three SH2 domains. Thus, for Itk SH2 structural analysis by NMR spectroscopy and X-ray crystallography revealed very different structural features: proline isomerization versus domain-swapped dimerization, respectively

    Ligand Specificity Modulated by Prolyl Imide Bond Cis/Trans Isomerization in the Itk SH2 Domain:  A Quantitative NMR Study

    Get PDF
    The Src homology 2 (SH2) domain of interleukin-2 tyrosine kinase (Itk) binds two separate ligands:  a phosphotyrosine-containing peptide and the Itk Src homology 3 (SH3) domain. Binding specificity for these ligands is regulated via cis/trans isomerization of the Asn 286−Pro 287 imide bond in the Itk SH2 domain. In this study, we develop a novel method of analyzing chemical shift perturbation and cross-peak volumes to measure the affinities of both ligands for each SH2 conformer. We find that the cis imide bond containing SH2 conformer exhibits a 3.5-fold higher affinity for the Itk SH3 domain compared with binding of the trans conformer to the same ligand, while the trans conformer binds phosphopeptide with a 4-fold greater affinity than the cis-containing SH2 conformer. In addition to furthering the understanding of this system, the method presented here will be of general application in quantitatively determining the specificities of conformationally heterogeneous systems that use a molecular switch to regulate binding between multiple distinct ligands

    Closed-Loop Simulation Study of the Ares I Upper Stage Thrust Vector Control Subsystem for Nominal and Failure Scenarios

    Get PDF
    As a replacement to the current Shuttle, the Ares I rocket and Orion crew module are currently under development by the National Aeronautics and Space Administration (NASA). This new launch vehicle is segmented into major elements, one of which is the Upper Stage (US). The US is further broken down into subsystems, one of which is the Thrust Vector Control (TVC) subsystem which gimbals the US rocket nozzle. Nominal and off-nominal simulations for the US TVC subsystem are needed in order to support the development of software used for control systems and diagnostics. In addition, a clear and complete understanding of the effect of off-nominal conditions on the vehicle flight dynamics is desired. To achieve these goals, a simulation of the US TVC subsystem combined with the Ares I vehicle as developed. This closed-loop dynamic model was created using Matlab s Simulink and a modified version of a vehicle simulation, MAVERIC, which is currently used in the Ares I project and was developed by the Marshall Space Flight Center (MSFC). For this report, the effects on the flight trajectory of the Ares I vehicle are investigated after failures are injected into the US TVC subsystem. The comparisons of the off-nominal conditions observed in the US TVC subsystem with those of the Ares I vehicle flight dynamics are of particular interest

    Evolving from Student to Teacher: Insights from the Conversation Café on Doctoral Student Mentorship

    Get PDF
    Mentorship has been proposed as a key process for preparing doctoral students as effective educators. However, few models have been described in-depth. To address this challenge, four social work doctoral graduates and one senior faculty member shared their insights drawing on their study on collaborative teaching mentorship, reflecting on their mentorship experiences and inviting feedback from the conference audience in the Conversation Café forum. The resultant discussion supported findings from our research and reinforced that more systematic and reflective efforts are needed to adequately prepare doctoral students for future teaching responsibilities. Specific strategies are summarized.

    Propulsion IVHM Technology Experiment

    Get PDF
    The Propulsion IVHM Technology Experiment (PITEX) successfully demonstrated real-time fault detection and isolation of a virtual reusable launch vehicle (RLV) main propulsion system (MPS). Specifically, the PITEX research project developed and applied a model-based diagnostic system for the MPS of the X-34 RLV, a space-launch technology demonstrator. The demonstration was simulation-based using detailed models of the propulsion subsystem to generate nominal and failure scenarios during captive carry, which is the most safety-critical portion of the X-34 flight. Since no system-level testing of the X-34 Main Propulsion System (MPS) was performed, these simulated data were used to verify and validate the software system. Advanced diagnostic and signal processing algorithms were developed and tested in real time on flight-like hardware. In an attempt to expose potential performance problems, the PITEX diagnostic system was subjected to numerous realistic effects in the simulated data including noise, sensor resolution, command/valve talkback information, and nominal build variations. In all cases, the PITEX system performed as required. The research demonstrated potential benefits of model-based diagnostics, defined performance metrics required to evaluate the diagnostic system, and studied the impact of real-world challenges encountered when monitoring propulsion subsystems
    • …
    corecore