330 research outputs found

    Repulsive Casimir Pistons

    Get PDF
    Casimir pistons are models in which finite Casimir forces can be calculated without any suspect renormalizations. It has been suggested that such forces are always attractive. We present three scenarios in which that is not true. Two of these depend on mixing two types of boundary conditions. The other, however, is a simple type of quantum graph in which the sign of the force depends upon the number of edges.Comment: 4 pages, 2 figures; RevTeX. Minor additions and correction

    Index theorems for quantum graphs

    Get PDF
    In geometric analysis, an index theorem relates the difference of the numbers of solutions of two differential equations to the topological structure of the manifold or bundle concerned, sometimes using the heat kernels of two higher-order differential operators as an intermediary. In this paper, the case of quantum graphs is addressed. A quantum graph is a graph considered as a (singular) one-dimensional variety and equipped with a second-order differential Hamiltonian H (a "Laplacian") with suitable conditions at vertices. For the case of scale-invariant vertex conditions (i.e., conditions that do not mix the values of functions and of their derivatives), the constant term of the heat-kernel expansion is shown to be proportional to the trace of the internal scattering matrix of the graph. This observation is placed into the index-theory context by factoring the Laplacian into two first-order operators, H =A*A, and relating the constant term to the index of A. An independent consideration provides an index formula for any differential operator on a finite quantum graph in terms of the vertex conditions. It is found also that the algebraic multiplicity of 0 as a root of the secular determinant of H is the sum of the nullities of A and A*.Comment: 19 pages, Institute of Physics LaTe

    The Dirichlet-to-Robin Transform

    Full text link
    A simple transformation converts a solution of a partial differential equation with a Dirichlet boundary condition to a function satisfying a Robin (generalized Neumann) condition. In the simplest cases this observation enables the exact construction of the Green functions for the wave, heat, and Schrodinger problems with a Robin boundary condition. The resulting physical picture is that the field can exchange energy with the boundary, and a delayed reflection from the boundary results. In more general situations the method allows at least approximate and local construction of the appropriate reflected solutions, and hence a "classical path" analysis of the Green functions and the associated spectral information. By this method we solve the wave equation on an interval with one Robin and one Dirichlet endpoint, and thence derive several variants of a Gutzwiller-type expansion for the density of eigenvalues. The variants are consistent except for an interesting subtlety of distributional convergence that affects only the neighborhood of zero in the frequency variable.Comment: 31 pages, 5 figures; RevTe

    Mathematical Aspects of Vacuum Energy on Quantum Graphs

    Get PDF
    We use quantum graphs as a model to study various mathematical aspects of the vacuum energy, such as convergence of periodic path expansions, consistency among different methods (trace formulae versus method of images) and the possible connection with the underlying classical dynamics. We derive an expansion for the vacuum energy in terms of periodic paths on the graph and prove its convergence and smooth dependence on the bond lengths of the graph. For an important special case of graphs with equal bond lengths, we derive a simpler explicit formula. The main results are derived using the trace formula. We also discuss an alternative approach using the method of images and prove that the results are consistent. This may have important consequences for other systems, since the method of images, unlike the trace formula, includes a sum over special ``bounce paths''. We succeed in showing that in our model bounce paths do not contribute to the vacuum energy. Finally, we discuss the proposed possible link between the magnitude of the vacuum energy and the type (chaotic vs. integrable) of the underlying classical dynamics. Within a random matrix model we calculate the variance of the vacuum energy over several ensembles and find evidence that the level repulsion leads to suppression of the vacuum energy.Comment: Fixed several typos, explain the use of random matrices in Section

    Metric-scalar gravity with torsion and the measurability of the non-minimal coupling

    Full text link
    The "measurability" of the non-minimal coupling is discussed by considering the correction to the Newtonian static potential in the semi-classical approach. The coefficient of the "gravitational Darwin term" (GDT) gets redefined by the non-minimal torsion-scalar couplings. Based on a similar analysis of the GDT in the effective field theory approach to non-minimal scalar we conclude that for reasonable values of the couplings the correction is very small.Comment: 10 pages, LaTex. Accepted for publication in Mod. Phys. Lett.

    Inappropriateness of the Rindler quantization

    Full text link
    It is argued that the Rindler quantization is not a correct approach to study the effects of acceleration on quantum fields. First, the "particle"-detector approach based on the Minkowski quantization is not equivalent to the approach based on the Rindler quantization. Second, the event horizon, which plays the essential role in the Rindler quantization, cannot play any physical role for a local noninertial observer.Comment: 3 pages, accepted for publication in Mod. Phys. Lett.

    Vacuum Quantum Effects for Parallel Plates Moving by Uniform Acceleration in Static de Sitter Space

    Full text link
    The Casimir forces on two parallel plates moving by uniform proper acceleration in static de Sitter background due to conformally coupled massless scalar field satisfying Dirichlet boundary conditions on the plates is investigated. Static de Sitter space is conformally related to the Rindler space, as a result we can obtain vacuum expectation values of energy-momentum tensor for conformally invariant field in static de Sitter space from the corresponding Rindler counterpart by the conformal transformation.Comment: 10 pages, no figures, accepted for publication in Int. J. Mod. Phys.

    The equivalence principle at work in radiation from unaccelerated atoms and mirrors

    Get PDF
    The equivalence principle is a perennial subject of controversy, especially in connection with radiation by a uniformly accelerated classical charge, or a freely falling charge observed by a supported detector. Recently, related issues have been raised in connection with the Unruh radiation associated with accelerated detectors (including two-level atoms and resonant cavities). A third type of system, very easy to analyze because of conformal invariance, is a two-dimensional scalar field interacting with perfectly reflecting boundaries (mirrors). After reviewing the issues for atoms and cavities, we investigate a stationary mirror from the point of view of an accelerated detector in 'Rindler space'. In keeping with the conclusions of earlier authors about the electromagnetic problem, we find that a radiative effect is indeed observed; from an inertial point of view, the process arises from a collision of the negative vacuum energy of Rindler space with the mirror. There is a qualitative symmetry under interchange of accelerated and inertial subsystems (a vindication of the equivalence principle), but it hinges on the accelerated detector's being initially in its own 'Rindler vacuum'. This observation is consistent with the recent work on the Unruh problem

    Restrictions on negative energy density in a curved spacetime

    Get PDF
    Recently a restriction ("quantum inequality-type relation") on the (renormalized) energy density measured by a static observer in a "globally static" (ultrastatic) spacetime has been formulated by Pfenning and Ford for the minimally coupled scalar field, in the extension of quantum inequality-type relation on flat spacetime of Ford and Roman. They found negative lower bounds for the line integrals of energy density multiplied by a sampling (weighting) function, and explicitly evaluate them for some specific spacetimes. In this paper, we study the lower bound on spacetimes whose spacelike hypersurfaces are compact and without boundary. In the short "sampling time" limit, the bound has asymptotic expansion. Although the expansion can not be represented by locally invariant quantities in general due to the nonlocal nature of the integral, we explicitly evaluate the dominant terms in the limit in terms of the invariant quantities. We also make an estimate for the bound in the long sampling time limit.Comment: LaTex, 23 Page
    • …
    corecore