482 research outputs found

    Surface Vacuum Energy in Cutoff Models: Pressure Anomaly and Distributional Gravitational Limit

    Full text link
    Vacuum-energy calculations with ideal reflecting boundaries are plagued by boundary divergences, which presumably correspond to real (but finite) physical effects occurring near the boundary. Our working hypothesis is that the stress tensor for idealized boundary conditions with some finite cutoff should be a reasonable ad hoc model for the true situation. The theory will have a sensible renormalized limit when the cutoff is taken away; this requires making sense of the Einstein equation with a distributional source. Calculations with the standard ultraviolet cutoff reveal an inconsistency between energy and pressure similar to the one that arises in noncovariant regularizations of cosmological vacuum energy. The problem disappears, however, if the cutoff is a spatial point separation in a "neutral" direction parallel to the boundary. Here we demonstrate these claims in detail, first for a single flat reflecting wall intersected by a test boundary, then more rigorously for a region of finite cross section surrounded by four reflecting walls. We also show how the moment-expansion theorem can be applied to the distributional limits of the source and the solution of the Einstein equation, resulting in a mathematically consistent differential equation where cutoff-dependent coefficients have been identified as renormalizations of properties of the boundary. A number of issues surrounding the interpretation of these results are aired.Comment: 22 pages, 2 figures, 1 table; PACS 03.70.+k, 04.20.Cv, 11.10.G

    Interacting Bosons at Finite Temperature: How Bogolubov Visited a Black Hole and Came Home Again

    Get PDF
    The structure of the thermal equilibrium state of a weakly interacting Bose gas is of current interest. We calculate the density matrix of that state in two ways. The most effective method, in terms of yielding a simple, explicit answer, is to construct a generating function within the traditional framework of quantum statistical mechanics. The alternative method, arguably more interesting, is to construct the thermal state as a vector state in an artificial system with twice as many degrees of freedom. It is well known that this construction has an actual physical realization in the quantum thermodynamics of black holes, where the added degrees of freedom correspond to the second sheet of the Kruskal manifold and the thermal vector state is a state of the Unruh or the Hartle-Hawking type. What is unusual about the present work is that the Bogolubov transformation used to construct the thermal state combines in a rather symmetrical way with Bogolubov's original transformation of the same form, used to implement the interaction of the nonideal gas in linear approximation. In addition to providing a density matrix, the method makes it possible to calculate efficiently certain expectation values directly in terms of the thermal vector state of the doubled system.Comment: 25 pages, LaTeX. To appear in a special issue of Foundations of Physics in honor of Jacob Bekenstei

    The Dirichlet-to-Robin Transform

    Full text link
    A simple transformation converts a solution of a partial differential equation with a Dirichlet boundary condition to a function satisfying a Robin (generalized Neumann) condition. In the simplest cases this observation enables the exact construction of the Green functions for the wave, heat, and Schrodinger problems with a Robin boundary condition. The resulting physical picture is that the field can exchange energy with the boundary, and a delayed reflection from the boundary results. In more general situations the method allows at least approximate and local construction of the appropriate reflected solutions, and hence a "classical path" analysis of the Green functions and the associated spectral information. By this method we solve the wave equation on an interval with one Robin and one Dirichlet endpoint, and thence derive several variants of a Gutzwiller-type expansion for the density of eigenvalues. The variants are consistent except for an interesting subtlety of distributional convergence that affects only the neighborhood of zero in the frequency variable.Comment: 31 pages, 5 figures; RevTe

    Mathematical Aspects of Vacuum Energy on Quantum Graphs

    Get PDF
    We use quantum graphs as a model to study various mathematical aspects of the vacuum energy, such as convergence of periodic path expansions, consistency among different methods (trace formulae versus method of images) and the possible connection with the underlying classical dynamics. We derive an expansion for the vacuum energy in terms of periodic paths on the graph and prove its convergence and smooth dependence on the bond lengths of the graph. For an important special case of graphs with equal bond lengths, we derive a simpler explicit formula. The main results are derived using the trace formula. We also discuss an alternative approach using the method of images and prove that the results are consistent. This may have important consequences for other systems, since the method of images, unlike the trace formula, includes a sum over special ``bounce paths''. We succeed in showing that in our model bounce paths do not contribute to the vacuum energy. Finally, we discuss the proposed possible link between the magnitude of the vacuum energy and the type (chaotic vs. integrable) of the underlying classical dynamics. Within a random matrix model we calculate the variance of the vacuum energy over several ensembles and find evidence that the level repulsion leads to suppression of the vacuum energy.Comment: Fixed several typos, explain the use of random matrices in Section

    Inappropriateness of the Rindler quantization

    Full text link
    It is argued that the Rindler quantization is not a correct approach to study the effects of acceleration on quantum fields. First, the "particle"-detector approach based on the Minkowski quantization is not equivalent to the approach based on the Rindler quantization. Second, the event horizon, which plays the essential role in the Rindler quantization, cannot play any physical role for a local noninertial observer.Comment: 3 pages, accepted for publication in Mod. Phys. Lett.

    Vacuum Quantum Effects for Parallel Plates Moving by Uniform Acceleration in Static de Sitter Space

    Full text link
    The Casimir forces on two parallel plates moving by uniform proper acceleration in static de Sitter background due to conformally coupled massless scalar field satisfying Dirichlet boundary conditions on the plates is investigated. Static de Sitter space is conformally related to the Rindler space, as a result we can obtain vacuum expectation values of energy-momentum tensor for conformally invariant field in static de Sitter space from the corresponding Rindler counterpart by the conformal transformation.Comment: 10 pages, no figures, accepted for publication in Int. J. Mod. Phys.

    Dynamics and symmetries of a field partitioned by an accelerated frame

    Get PDF
    The canonical evolution and symmetry generators are exhibited for a Klein-Gordon (K-G) system which has been partitioned by an accelerated coordinate frame into a pair of subsystems. This partitioning of the K-G system is conveyed to the canonical generators by the eigenfunction property of the Minkowski Bessel (M-B) modes. In terms of the M-B degrees of freedom, which are unitarily related to those of the Minkowski plane waves, a near complete diagonalization of these generators can be realized.Comment: 14 pages, PlainTex. Related papers on accelerated frames available at http://www.math.ohio-state.edu/~gerlac

    Systematics of the Relationship between Vacuum Energy Calculations and Heat Kernel Coefficients

    Get PDF
    Casimir energy is a nonlocal effect; its magnitude cannot be deduced from heat kernel expansions, even those including the integrated boundary terms. On the other hand, it is known that the divergent terms in the regularized (but not yet renormalized) total vacuum energy are associated with the heat kernel coefficients. Here a recent study of the relations among the eigenvalue density, the heat kernel, and the integral kernel of the operator e−tHe^{-t\sqrt{H}} is exploited to characterize this association completely. Various previously isolated observations about the structure of the regularized energy emerge naturally. For over 20 years controversies have persisted stemming from the fact that certain (presumably physically meaningful) terms in the renormalized vacuum energy density in the interior of a cavity become singular at the boundary and correlate to certain divergent terms in the regularized total energy. The point of view of the present paper promises to help resolve these issues.Comment: 19 pages, RevTeX; Discussion section rewritten in response to referees' comments, references added, minor typos correcte
    • 

    corecore