4,088 research outputs found

    Room-temperature observation and current control of skyrmions in Pt/Co/Os/Pt thin films

    Full text link
    We report the observation of room-temperature magnetic skyrmions in Pt/Co/Os/Pt thin-film heterostructures and their response to electric currents. The magnetic properties are extremely sensitive to inserting thin Os layers between the Co-Pt interface resulting in reduced saturation magnetization, magnetic anisotropy and Curie temperature. The observed skyrmions exist in a narrow temperature, applied-field and layer-thickness range near the spin-reorientation transition from perpendicular to in-plane magnetic anisotropy. The skyrmions have an average diameter of 2.3{\mu}m and transport measurements demonstrate these features can be displaced with current densities as low as J = 2x10^4 A/cm^2 and display a skyrmion Hall effect.Comment: 17 pages, 5 figure

    Distortion of the Stoner-Wohlfarth astroid by a spin-polarized current

    Full text link
    The Stoner-Wohlfarth astroid is a fundamental object in magnetism. It separates regions of the magnetic field space with two stable magnetization equilibria from those with only one stable equilibrium and it characterizes the magnetization reversal of nano-magnets induced by applied magnetic fields. On the other hand, it was recently demonstrated that transfer of spin angular momentum from a spin-polarized current provides an alternative way of switching the magnetization. Here, we examine the astroid of a nano-magnet with uniaxial magnetic anisotropy under the combined influence of applied fields and spin-transfer torques. We find that spin-transfer is most efficient at modifying the astroid when the external field is applied along the easy-axis of magnetization. On departing from this situation, a threshold current appears below which spin-transfer becomes ineffective yielding a current-induced dip in the astroid along the easy-axis direction. An extension of the Stoner-Wohlfarth model is outlined which accounts for this phenomenon.Comment: 8 pages, 6 figure

    Directory of aerospace safety specialized information sources

    Get PDF
    Directory aids safety specialists in locating information sources and individual experts in engineering-related fields. Lists 170 organizations and approximately 300 individuals who can provide safety-related technical information in form of documentation, data, and consulting expertise. Information on hazard and failure cause identification, accident analysis, and materials characteristics are covered

    Temperature dependence of the switching field distributions in all-perpendicular spin-valve nanopillars

    Full text link
    We present temperature dependent switching measurements of the Co/Ni multilayered free element of 75 nm diameter spin-valve nanopillars. Angular dependent hysteresis measurements as well as switching field measurements taken at low temperature are in agreement with a model of thermal activation over a perpendicular anisotropy barrier. However, the statistics of switching (mean switching field and switching variance) from 20 K up to 400 K are in disagreement with a N\'{e}el-Brown model that assumes a temperature independent barrier height and anisotropy field. We introduce a modified N\'{e}el-Brown model thats fit the experimental data in which we take a T3/2T^{3/2} dependence to the barrier height and the anisotropy field due to the temperature dependent magnetization and anisotropy energy.Comment: 5 pages, 4 figure

    Synthesizing Skyrmion Molecules in Fe-Gd Thin Films

    Get PDF
    We show that properly engineered amorphous Fe-Gd alloy thin films with perpendicular magnetic anisotropy exhibit room-temperature skyrmion molecules, or a pair of like-polarity, opposite-helicity skyrmions. Magnetic mirror symmetry planes present in the stripe phase, instead of chiral exchange, determine the internal skyrmion structure and the net achirality of the skyrmion phase. Our study shows that stripe domain engineering in amorphous alloy thin films may enable the creation of skyrmion phases with technologically desirable properties.Comment: 15 pages, 6 figures. Accepted for publication in Applied Physics Letter

    Structure and clumping in the fast wind of NGC6543

    Full text link
    Far-UV spectroscopy from the FUSE satellite is analysed to uniquely probe spatial structure and clumping in the fast wind of the central star of the H-rich planetary nebula NGC6543 (HD164963). Time-series data of the unsaturated PV 1118, 1128 resonance line P Cygni profiles provide a very sensitive diagnostic of variable wind conditions in the outflow. We report on the discovery of episodic and recurrent optical depth enhancements in the PV absorption troughs, with some evidence for a 0.17-day modulation time-scale. SEI line-synthesis modelling is used to derive physical properties, including the optical depth evolution of individual `events'. The characteristics of these features are essentially identical to the `discrete absorption components' (DACs) commonly seen in the UV lines of massive OB stars. We have also employed the unified model atmosphere code CMFGEN to explore spectroscopic signatures of clumping, and report in particular on the clear sensitivity of the PV lines to the clump volume filling factor. The results presented here have implications for the downward revision of mass-loss rates in PN central stars. We conclude that the temporal structures seen in the PV lines of NGC6543 likely have a physical origin that is similar to that operating in massive, luminous stars, and may be related to near-surface perturbations caused by stellar pulsation and/or magnetic fields.Comment: 11 pages, 11 figures. Accepted for publication in MNRA

    Temperature dependent nucleation and propagation of domain walls in a sub-100 nm perpendicularly magnetized Co/Ni multilayer

    Full text link
    We present a study of the temperature dependence of the switching fields in Co/Ni-based perpendicularly magnetized spin-valves. While magnetization reversal of all-perpendicular Co/Ni spin valves at ambient temperatures is typically marked by a single sharp step change in resistance, low temperature measurements can reveal a series of resistance steps, consistent with non-uniform magnetization configurations. We propose a model that consists of domain nucleation, propagation and annihilation to explain the temperature dependence of the switching fields. Interestingly, low temperature (<30 K) step changes in resistance that we associate with domain nucleation, have a bimodal switching field and resistance step distribution, attributable to two competing nucleation pathways.Comment: 5 pages, 4 figure

    Putting poverty in political context: A multi-level analysis of working-aged poverty across 18 affluent democracies

    Full text link
    Our study analyzes how political context, embodied by the welfare state and Leftist political actors, shapes individual poverty. Using the Luxembourg Income Study, we conduct a multilevel analysis of working-aged adult poverty across 18 affluent Western democracies. Our index of welfare generosity has a negative effect on poverty net of individual characteristics and structural context. For each standard deviation increase in welfare generosity, the odds of poverty decline by a factor of 2.3. The odds of poverty in the U.S. (the least generous welfare state) are greater by a factor of 16.6 than a person with identical characteristics in Denmark (the most generous welfare state). Significant interaction effects suggest that welfare generosity reduces the extent to which low education and the number of children increase poverty. Also, welfare generosity reduces poverty among those with low education, single mother households, and young households. We show that Leftist parties and union density reduce the odds of poverty, however their effects channel through the welfare state. Ultimately, poverty is shaped both by individual characteristics and the political context in which that individual resides
    corecore