6 research outputs found
Enhanced Food Anticipatory Activity Associated with Enhanced Activation of Extrahypothalamic Neural Pathways in Serotonin2C Receptor Null Mutant Mice
The ability to entrain circadian rhythms to food availability is important for survival. Food-entrained circadian rhythms are characterized by increased locomotor activity in anticipation of food availability (food anticipatory activity). However, the molecular components and neural circuitry underlying the regulation of food anticipatory activity remain unclear. Here we show that serotonin2C receptor (5-HT2CR) null mutant mice subjected to a daytime restricted feeding schedule exhibit enhanced food anticipatory activity compared to wild-type littermates, without phenotypic differences in the impact of restricted feeding on food consumption, body weight loss, or blood glucose levels. Moreover, we show that the enhanced food anticipatory activity in 5-HT2CR null mutant mice develops independent of external light cues and persists during two days of total food deprivation, indicating that food anticipatory activity in 5-HT2CR null mutant mice reflects the locomotor output of a food-entrainable oscillator. Whereas restricted feeding induces c-fos expression to a similar extent in hypothalamic nuclei of wild-type and null mutant animals, it produces enhanced expression in the nucleus accumbens and other extrahypothalamic regions of null mutant mice relative to wild-type subjects. These data suggest that 5-HT2CRs gate food anticipatory activity through mechanisms involving extrahypothalamic neural pathways
The GABAergic parafacial zone is a medullary slow wave sleep–promoting center
Work in animals and humans has suggested the existence of a slow wave sleep (SWS)-promoting/electroencephalogram (EEG)-synchronizing center in the mammalian lower brainstem. Although sleep-active GABAergic neurons in the medullary parafacial zone (PZ) are needed for normal SWS, it remains unclear whether these neurons can initiate and maintain SWS or EEG slow-wave activity (SWA) in behaving mice. We used genetically targeted activation and optogenetically based mapping to examine the downstream circuitry engaged by SWS-promoting PZ neurons, and we found that this circuit uniquely and potently initiated SWS and EEG SWA, regardless of the time of day. PZ neurons monosynaptically innervated and released synaptic GABA onto parabrachial neurons, which in turn projected to and released synaptic glutamate onto cortically projecting neurons of the magnocellular basal forebrain; thus, there is a circuit substrate through which GABAergic PZ neurons can potently trigger SWS and modulate the cortical EEG
The acute light-induction of sleep is mediated by OPN4-based photoreception.
Sleep is regulated by both homeostatic and circadian mechanisms. The latter, termed 'process c', helps synchronize sleep-wake patterns to the appropriate time of the day. However, in the absence of a circadian clock, overall sleep-wake rhythmicity is preserved and remains synchronized to the external light-dark cycle, indicating that there is an additional, clock-independent photic input to sleep. We found that the direct photic regulation of sleep in mice is predominantly mediated by melanopsin (OPN4)-based photoreception of photosensitive retinal ganglion cells (pRGCs). Moreover, OPN4-dependent sleep regulation was correlated with the activation of sleep-promoting neurons in the ventrolateral preoptic area and the superior colliculus. Collectively, our findings describe a previously unknown pathway in sleep regulation and identify the pRGC/OPN4 signaling system as a potentially new pharmacological target for the selective manipulation of sleep and arousal states