489 research outputs found

    Monoclonal antibody Py recognizes neurofilament heavy chain and is a selective marker for large diameter neurons in the brain Brain Structure and Function

    Get PDF
    Almost 30 years ago, the monoclonal antibody Py was developed to detect pyramidal neurons in the CA3 region of the rat hippocampus. The utility of this antibody quickly expanded when several groups discovered that it could be used to identify very specific populations of neurons in the normal, developing, and diseased or injured central nervous system. Despite this body of literature, the identity of the antigen that the Py antibody recognizes remained elusive. Here, immunoprecipitation experiments from the adult rat cortex identified the Py antigen as neurofilament heavy chain (NF-H). Double immunolabeling of sections through the rat brain using Py and NF-H antibodies confirmed the identity of the Py antigen, and reveal that Py/NF-H+ neurons appear to share the feature of being particularly large in diameter. These include the neurons of the gigantocellular reticular formation, pyramidal neurons of layers II/III and V of the cortex, cerebellar Purkinje neurons as well as CA3 pyramidal neurons. Taken together, this finding gives clarity to past work using the monoclonal Py antibody, and immediately expands our understanding of the importance of NF-H in neural development, functioning, and disease

    Understanding the molecular consequences of inherited muscular dystrophies:advancements through proteomic experimentation

    Get PDF
    Introduction: Proteomic techniques offer insights into the molecular perturbations occurring in muscular-dystrophies (MD). Revisiting published datasets can highlight conserved downstream molecular alterations, which may be worth re-assessing to determine whether their experimental manipulation is capable of modulating disease severity. Areas covered: Here, we review the MD literature, highlighting conserved molecular insights warranting mechanistic investigation for therapeutic potential. We also describe a workflow currently proving effective for efficient identification of biomarkers & therapeutic targets in other neurodegenerative conditions, upon which future MD proteomic investigations could be modelled. Expert commentary: Studying disease models can be useful for identifying biomarkers and model specific degenerative cascades, but rarely offer translatable mechanistic insights into disease pathology. Conversely, direct analysis of human samples undergoing degeneration presents challenges derived from complex chronic degenerative molecular processes. This requires a carefully planed & reproducible experimental paradigm accounting for patient selection through to grouping by disease severity and ending with proteomic data filtering and processing

    Scalable Transcriptome Preparation for Massive Parallel Sequencing

    Get PDF
    Background: The tremendous output of massive parallel sequencing technologies requires automated robust and scalable sample preparation methods to fully exploit the new sequence capacity. Methodology: In this study, a method for automated library preparation of RNA prior to massively parallel sequencing is presented. The automated protocol uses precipitation onto carboxylic acid paramagnetic beads for purification and size selection of both RNA and DNA. The automated sample preparation was compared to the standard manual sample preparation. Conclusion/Significance: The automated procedure was used to generate libraries for gene expression profiling on the Illumina HiSeq 2000 platform with the capacity of 12 samples per preparation with a significantly improved throughput compared to the standard manual preparation. The data analysis shows consistent gene expression profiles in terms of sensitivity and quantification of gene expression between the two library preparation methods

    Natural genetic variation in fluctuating asymmetry of wing shape in Drosophila melanogaster

    Get PDF
    Fluctuating asymmetry (FA), defined as random deviation from perfect symmetry, has been used to assay the inability of individuals to buffer their developmental processes from environmental perturbations (i.e., developmental instability). In this study, we aimed to characterize the natural genetic variation in FA of wing shape in Drosophila melanogaster, collected from across the Japanese archipelago. We quantified wing shapes at whole wing and partial wing component levels and evaluated their mean and FA. We also estimated the heritability of the mean and FA of these traits. We found significant natural genetic variation in all the mean wing traits and in FA of one of the partial wing components. Heritability estimates for mean wing shapes were significant in two and four out of five wing traits in males and females, respectively. On the contrary, heritability estimates for FA were low and not significant. This is a novel study of natural genetic variation in FA of wing shape. Our findings suggest that partial wing components behave as distinct units of selection for FA, and local adaptation of the mechanisms to stabilize developmental processes occur in nature

    Genetic Mapping of Social Interaction Behavior in B6/MSM Consomic Mouse Strains

    Get PDF
    Genetic studies are indispensable for understanding the mechanisms by which individuals develop differences in social behavior. We report genetic mapping of social interaction behavior using inter-subspecific consomic strains established from MSM/Ms (MSM) and C57BL/6J (B6) mice. Two animals of the same strain and sex, aged 10 weeks, were introduced into a novel open-field for 10 min. Social contact was detected by an automated system when the distance between the centers of the two animals became less than ~12 cm. In addition, detailed behavioral observations were made of the males. The wild-derived mouse strain MSM showed significantly longer social contact as compared to B6. Analysis of the consomic panel identified two chromosomes (Chr 6 and Chr 17) with quantitative trait loci (QTL) responsible for lengthened social contact in MSM mice and two chromosomes (Chr 9 and Chr X) with QTL that inhibited social contact. Detailed behavioral analysis of males identified four additional chromosomes associated with social interaction behavior. B6 mice that contained Chr 13 from MSM showed more genital grooming and following than the parental B6 strain, whereas the presence of Chr 8 and Chr 12 from MSM resulted in a reduction of those behaviors. Longer social sniffing was observed in Chr 4 consomic strain than in B6 mice. Although the frequency was low, aggressive behavior was observed in a few pairs from consomic strains for Chrs 4, 13, 15 and 17, as well as from MSM. The social interaction test has been used as a model to measure anxiety, but genetic correlation analysis suggested that social interaction involves different aspects of anxiety than are measured by open-field test

    Ascorbate Biosynthesis during Early Fruit Development Is the Main Reason for Its Accumulation in Kiwi

    Get PDF
    Background: Ascorbic acid (AsA) is a unique antioxidant as well as an enzyme cofactor. Although it has multiple roles in plants, it is unclear how its accumulation is controlled at the expression level, especially in sink tissues. Kiwifruit (Actinidia) is well-known for its high ascorbate content. Our objective was to determine whether AsA accumulates in the fruits primarily through biosynthesis or because it is imported from the foliage. Methodology/Principal Findings: We systematically investigated AsA levels, biosynthetic capacity, and mRNA expression of genes involved in AsA biosynthesis in kiwi (A. deliciosa cv. Qinmei). Recycling and AsA localization were also monitored during fruit development and among different tissue types. Over time, the amount of AsA, with its capacity for higher biosynthesis and lower recycling, peaked at 30 days after anthesis (DAA), and then decreased markedly up to 60 DAA before declining more slowly. Expression of key genes showed similar patterns of change, except for L-galactono-1,4-lactone dehydrogenase and L-galactose-1-phosphate phosphatase (GPP). However, GPP had good correlation with the rate of AsA accumulation. The expression of these genes could be detected in phloem of stem as well as petiole of leaf and fruit. Additionally, fruit petioles had greater ascorbate amounts, although that was the site of lowest expression by most genes. Fruit microtubule tissues also had higher AsA. However, exogenous applications of AsA to those petioles did not lead to its transport into fruits, and distribution of ascorbate was cell-specific in the fruits, with more accumulation occurring in large

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    Global trends in milk quality: implications for the Irish dairy industry

    Get PDF
    The quality of Irish agricultural product will become increasingly important with the ongoing liberalisation of international trade. This paper presents a review of the global and Irish dairy industries; considers the impact of milk quality on farm profitability, food processing and human health, examines global trends in quality; and explores several models that are successfully being used to tackle milk quality concerns. There is a growing global demand for dairy products, fuelled in part by growing consumer wealth in developing countries. Global dairy trade represents only 6.2% of global production and demand currently outstrips supply. Although the Irish dairy industry is small by global standards, approximately 85% of annual production is exported annually. It is also the world's largest producer of powdered infant formula. Milk quality has an impact on human health, milk processing and on-farm profitability. Somatic cell count (SCC) is a key measure of milk quality, with a SCC not exceeding 400,000 cells/ml (the EU milk quality standard) generally accepted as the international export standard. There have been ongoing improvements in milk quality among both established and emerging international suppliers. A number of countries have developed successful industry-led models to tackle milk quality concerns. Based on international experiences, it is likely that problems with effective translation of knowledge to practice, rather than incomplete knowledge per se, are the more important constraints to national progress towards improved milk quality
    corecore