11 research outputs found

    Future developments in brain-machine interface research

    Get PDF
    Neuroprosthetic devices based on brain-machine interface technology hold promise for the restoration of body mobility in patients suffering from devastating motor deficits caused by brain injury, neurologic diseases and limb loss. During the last decade, considerable progress has been achieved in this multidisciplinary research, mainly in the brain-machine interface that enacts upper-limb functionality. However, a considerable number of problems need to be resolved before fully functional limb neuroprostheses can be built. To move towards developing neuroprosthetic devices for humans, brain-machine interface research has to address a number of issues related to improving the quality of neuronal recordings, achieving stable, long-term performance, and extending the brain-machine interface approach to a broad range of motor and sensory functions. Here, we review the future steps that are part of the strategic plan of the Duke University Center for Neuroengineering, and its partners, the Brazilian National Institute of Brain-Machine Interfaces and the École Polytechnique Fédérale de Lausanne (EPFL) Center for Neuroprosthetics, to bring this new technology to clinical fruition

    Elicitation of broadly protective sarbecovirus immunity by receptor-binding domain nanoparticle vaccines

    Get PDF
    Understanding vaccine-elicited protection against SARS-CoV-2 variants and other sarbecoviruses is key for guiding public health policies. We show that a clinical stage multivalent SARS-CoV-2 spike receptor-binding domain nanoparticle vaccine (RBD-NP) protects mice from SARS-CoV-2 challenge after a single immunization, indicating a potential dose-sparing strategy. We benchmarked serum neutralizing activity elicited by RBD-NP in non-human primates against a lead prefusion-stabilized SARS-CoV-2 spike (HexaPro) using a panel of circulating mutants. Polyclonal antibodies elicited by both vaccines are similarly resilient to many RBD residue substitutions tested although mutations at and surrounding position 484 have negative consequences for neutralization. Mosaic and cocktail nanoparticle immunogens displaying multiple sarbecovirus RBDs elicit broad neutralizing activity in mice and protect mice against SARS-CoV challenge even in the absence of SARS-CoV RBD in the vaccine. This study provides proof of principle that multivalent sarbecovirus RBD-NPs induce heterotypic protection and motivates advancing such broadly protective sarbecovirus vaccines to the clinic

    Nonlinear kinematics for piezoelectricity in ALEGRA-EMMA.

    No full text
    This report develops and documents nonlinear kinematic relations needed to implement piezoelectric constitutive models in ALEGRA-EMMA [5], where calculations involving large displacements and rotations are routine. Kinematic relationships are established using Gauss's law and Faraday's law; this presentation on kinematics goes beyond piezoelectric materials and is applicable to all dielectric materials. The report then turns to practical details of implementing piezoelectric models in an application code where material principal axes are rarely aligned with user defined problem coordinate axes. This portion of the report is somewhat pedagogical but is necessary in order to establish documentation for the piezoelectric implementation in ALEGRA-EMMA. This involves transforming elastic, piezoelectric, and permittivity moduli from material principal axes to problem coordinate axes. The report concludes with an overview of the piezoelectric implementation in ALEGRA-EMMA and small verification examples

    Development and deployment of constitutive softening routines in Eulerian hydrocodes.

    No full text
    The state of the art in failure modeling enables assessment of crack nucleation, propagation, and progression to fragmentation due to high velocity impact. Vulnerability assessments suggest a need to track material behavior through failure, to the point of fragmentation and beyond. This eld of research is particularly challenging for structures made of porous quasi-brittle materials, such as ceramics used in modern armor systems, due to the complex material response when loading exceeds the quasi-brittle material's elastic limit. Further complications arise when incorporating the quasi-brittle material response in multi-material Eulerian hydrocode simulations. In this report, recent e orts in coupling a ceramic materials response in the post-failure regime with an Eulerian hydro code are described. Material behavior is modeled by the Kayenta material model [2]and Alegra as the host nite element code [14]. Kayenta, a three invariant phenomenological plasticity model originally developed for modeling the stress response of geologic materials, has in recent years been used with some success in the modeling of ceramic and other quasi-brittle materials to high velocity impact. Due to the granular nature of ceramic materials, Kayenta allows for signi cant pressures to develop due to dilatant plastic ow, even in shear dominated loading where traditional equations of state predict little or no pressure response. When a material's ability to carry further load is compromised, Kayenta allows the material's strength and sti ness to progressively degrade through the evolution of damage to the point of material failure. As material dilatation and damage progress, accommodations are made within Alegra to treat in a consistent manner the evolving state

    Severe hypoglycemia and diabetic ketoacidosis in adults with type 1 diabetes: results from the T1D Exchange clinic registry

    No full text

    Rationale and Design for a GRADE Substudy of Continuous Glucose Monitoring

    No full text
    corecore