492 research outputs found

    Saturn's Seismic Rotation Revisited

    Full text link
    Normal mode seismology is a promising means of measuring rotation in gas giant interiors, and ring seismology presents a singular opportunity to do so at Saturn. We calculate Saturn's normal modes of oscillation and zonal gravity field, using nonperturbative methods for normal modes in the rigidly rotating approximation, and perturbative methods for the shifts that Saturn's deep winds induce in the mode frequencies and zonal gravity harmonics. The latter are calculated by solving the thermo-gravitational wind equation in an oblate geometry. Comparing many such models to gravity data and the frequencies of ring patterns excited by Saturn normal modes, we use statistical methods to estimate that Saturn's cloud-level winds extend inward along cylinders before decaying at a depth 0.125-0.138 times Saturn's equatorial radius, or 7,530-8,320 km, consistent with analyses of Cassini gravity and magnetic field data. The seismology is especially useful for pinning down Saturn's poorly constrained deep rotation period, which we estimate at 634.7 min (median) with a 5/95% quantile range 633.8-635.5 min. Outstanding residuals in mode frequencies at low angular degree suggest a more complicated deep interior than has been considered to date. Smaller but still significant residuals at high angular degree also show that our picture for the thermal, composition, and/or rotation profile in Saturn's envelope is not yet complete.Comment: Accepted to PS

    Lower tidal volume at initiation of mechanical ventilation may reduce progression to acute respiratory distress syndrome: A systematic review

    Get PDF
    INTRODUCTION: The most appropriate tidal volume in patients without acute respiratory distress syndrome (ARDS) is controversial and has not been rigorously examined. Our objective was to determine whether a mechanical ventilation strategy using lower tidal volume is associated with a decreased incidence of progression to ARDS when compared with a higher tidal volume strategy. METHODS: A systematic search of MEDLINE, EMBASE, CINAHL, the Cochrane Library, conference proceedings, and clinical trial registration was performed with a comprehensive strategy. Studies providing information on mechanically ventilated patients without ARDS at the time of initiation of mechanical ventilation, and in which tidal volume was independently studied as a predictor variable for outcome, were included. The primary outcome was progression to ARDS. RESULTS: The search yielded 1,704 studies, of which 13 were included in the final analysis. One randomized controlled trial was found; the remaining 12 studies were observational. The patient cohorts were significantly heterogeneous in composition and baseline risk for developing ARDS; therefore, a meta-analysis of the data was not performed. The majority of the studies (n = 8) showed a decrease in progression to ARDS with a lower tidal volume strategy. ARDS developed early in the course of illness (5 hours to 3.7 days). The development of ARDS was associated with increased mortality, lengths of stay, mechanical ventilation duration, and nonpulmonary organ failure. CONCLUSIONS: In mechanically ventilated patients without ARDS at the time of endotracheal intubation, the majority of data favors lower tidal volume to reduce progression to ARDS. However, due to significant heterogeneity in the data, no definitive recommendations can be made. Further randomized controlled trials examining the role of lower tidal volumes in patients without ARDS, controlling for ARDS risk, are needed. 2013 Fuller et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited

    Active Noise Control of Radiated Noise from Jets Originating NASA

    Get PDF
    The reduction of jet noise using a closed-loop active noise control system with highbandwidth active chevrons was investigated. The high frequency energy introduced by piezoelectrically-driven chevrons was demonstrated to achieve a broadband reduction of jet noise, presumably due to the suppression of large-scale turbulence. For a nozzle with one active chevron, benefits of up to 0.8 dB overall sound pressure level (OASPL) were observed compared to a static chevron nozzle near the maximum noise emission angle, and benefits of up to 1.9 dB OASPL were observed compared to a baseline nozzle with no chevrons. The closed-loop actuation system was able to effectively reduce noise at select frequencies by 1-3 dB. However, integrated OASPL did not indicate further reduction beyond the open-loop benefits, most likely due to the preliminary controller design, which was focused on narrowband performance

    A Recording-Based Method for Auralization of Rotorcraft Flyover Noise

    Get PDF
    Rotorcraft noise is an active field of study as the sound produced by these vehicles is often found to be annoying. A means to auralize rotorcraft flyover noise is sought to help understand the factors leading to annoyance. Previous work by the authors focused on auralization of rotorcraft fly-in noise, in which a simplification was made that enabled the source noise synthesis to be based on a single emission angle. Here, the goal is to auralize a complete flyover event, so the source noise synthesis must be capable of traversing a range of emission angles. The synthesis uses a source noise definition process that yields periodic and aperiodic (modulation) components at a set of discrete emission angles. In this work, only the periodic components are used for the source noise synthesis for the flyover; the inclusion of modulation components is the subject of ongoing research. Propagation of the synthesized source noise to a ground observer is performed using the NASA Auralization Framework. The method is demonstrated using ground recordings from a flight test of the AS350 helicopter for the source noise definition

    Using Group Model Building to Understand Factors That Influence Childhood Obesity in an Urban Environment

    Get PDF
    Background: Despite increased attention, conventional views of obesity are based upon individual behaviors, and children and parents living with obesity are assumed to be the primary problem solvers. Instead of focusing exclusively on individual reduction behaviors for childhood obesity, greater focus should be placed on better understanding existing community systems and their effects on obesity. The Milwaukee Childhood Obesity Prevention Project is a community-based coalition established to develop policy and environmental change strategies to impact childhood obesity in Milwaukee, Wisconsin. The coalition conducted a Group Model Building exercise to better understand root causes of childhood obesity in its community. Methods: Group Model Building is a process by which a group systematically engages in model construction to better understand the systems that are in place. It helps participants make their mental models explicit through a careful and consistent process to test assumptions. This process has 3 main components: (1) assembling a team of participants; (2) conducting a behavior-over-time graphs exercise; and (3) drawing the causal loop diagram exercise. Results: The behavior-over-time graph portion produced 61 graphs in 10 categories. The causal loop diagram yielded 5 major themes and 7 subthemes. Conclusions: Factors that influence childhood obesity are varied, and it is important to recognize that no single solution exists. The perspectives from this exercise provided a means to create a process for dialogue and commitment by stakeholders and partnerships to build capacity for change within the community

    A Background Noise Reduction Technique Using Adaptive Noise Cancellation for Microphone Arrays

    Get PDF
    Background noise in wind tunnel environments poses a challenge to acoustic measurements due to possible low or negative Signal to Noise Ratios (SNRs) present in the testing environment. This paper overviews the application of time domain Adaptive Noise Cancellation (ANC) to microphone array signals with an intended application of background noise reduction in wind tunnels. An experiment was conducted to simulate background noise from a wind tunnel circuit measured by an out-of-flow microphone array in the tunnel test section. A reference microphone was used to acquire a background noise signal which interfered with the desired primary noise source signal at the array. The technique s efficacy was investigated using frequency spectra from the array microphones, array beamforming of the point source region, and subsequent deconvolution using the Deconvolution Approach for the Mapping of Acoustic Sources (DAMAS) algorithm. Comparisons were made with the conventional techniques for improving SNR of spectral and Cross-Spectral Matrix subtraction. The method was seen to recover the primary signal level in SNRs as low as -29 dB and outperform the conventional methods. A second processing approach using the center array microphone as the noise reference was investigated for more general applicability of the ANC technique. It outperformed the conventional methods at the -29 dB SNR but yielded less accurate results when coherence over the array dropped. This approach could possibly improve conventional testing methodology but must be investigated further under more realistic testing conditions

    Health-Related Quality of Life After Stereotactic Body Radiation Therapy for Localized Prostate Cancer: Results From a Multi-institutional Consortium of Prospective Trials

    Get PDF
    PurposeTo evaluate the early and late health-related quality of life (QOL) outcomes among prostate cancer patients following stereotactic body radiation therapy (SBRT).Methods and MaterialsPatient self-reported QOL was prospectively measured among 864 patients from phase 2 clinical trials of SBRT for localized prostate cancer. Data from the Expanded Prostate Cancer Index Composite (EPIC) instrument were obtained at baseline and at regular intervals up to 6 years. SBRT delivered a median dose of 36.25 Gy in 4 or 5 fractions. A short course of androgen deprivation therapy was given to 14% of patients.ResultsMedian follow-up was 3 years and 194 patients remained evaluable at 5 years. A transient decline in the urinary and bowel domains was observed within the first 3 months after SBRT which returned to baseline status or better within 6 months and remained so beyond 5 years. The same pattern was observed among patients with good versus poor baseline function and was independent of the degree of early toxicities. Sexual QOL decline was predominantly observed within the first 9 months, a pattern not altered by the use of androgen deprivation therapy or patient age.ConclusionLong-term outcome demonstrates that prostate SBRT is well tolerated and has little lasting impact on health-related QOL. A transient and modest decline in urinary and bowel QOL during the first few months after SBRT quickly recovers to baseline levels. With a large number of patients evaluable up to 5 years following SBRT, it is unlikely that unexpected late adverse effects will manifest themselves

    Future Directions for Whole Atmosphere Modeling:Developments in the Context of Space Weather

    Get PDF
    Coupled Sun‐to‐Earth models represent a key part of the future development of space weather forecasting. With respect to predicting the state of the thermosphere and ionosphere, there has been a recent paradigm shift; it is now clear that any self‐respecting model of this region needs to include some representation of forcing from the lower atmosphere, as well as solar and geomagnetic forcing. Here we assess existing modeling capability and set out a roadmap for the important next steps needed to ensure further advances. These steps include a model verification strategy, analysis of the impact of non‐hydrostatic dynamical cores, and a cost‐benefit analysis of model chemistry for weather and climate applications

    Estimating the Health Effects of Adding Bicycle and Pedestrian Paths at the Census Tract Level: Multiple Model Comparison

    Get PDF
    Background: Adding additional bicycle and pedestrian paths to an area can lead to improved health outcomes for residents over time. However, quantitatively determining which areas benefit more from bicycle and pedestrian paths, how many miles of bicycle and pedestrian paths are needed, and the health outcomes that may be most improved remain open questions. Objective: Our work provides and evaluates a methodology that offers actionable insight for city-level planners, public health officials, and decision makers tasked with the question “To what extent will adding specified bicycle and pedestrian path mileage to a census tract improve residents’ health outcomes over time?” Methods: We conducted a factor analysis of data from the American Community Survey, Center for Disease Control 500 Cities project, Strava, and bicycle and pedestrian path location and use data from two different cities (Norfolk, Virginia, and San Francisco, California). We constructed 2 city-specific factor models and used an algorithm to predict the expected mean improvement that a specified number of bicycle and pedestrian path miles contributes to the identified health outcomes. Results: We show that given a factor model constructed from data from 2011 to 2015, the number of additional bicycle and pedestrian path miles in 2016, and a specific census tract, our models forecast health outcome improvements in 2020 more accurately than 2 alternative approaches for both Norfolk, Virginia, and San Francisco, California. Furthermore, for each city, we show that the additional accuracy is a statistically significant improvement (P2 weeks of poor physical health days in the census tract within 1.83% (SD 0.57%). For San Francisco (n=49 census tracts), our approach estimates, on average, that the percentage of individuals who had a stroke in the census tract is within 1.81% (SD 0.52%), and the percentage of individuals with diabetes in the census tract is within 1.26% (SD 0.91%). Conclusions: We propose and evaluate a methodology to enable decision makers to weigh the extent to which 2 bicycle and pedestrian paths of equal cost, which were proposed in different census tracts, improve residents’ health outcomes; identify areas where bicycle and pedestrian paths are unlikely to be effective interventions and other strategies should be used; and quantify the minimum amount of additional bicycle path miles needed to maximize health outcome improvements. Our methodology shows statistically significant improvements, compared with alternative approaches, in historical accuracy for 2 large cities (for 2016) within different geographic areas and with different demographics
    • 

    corecore