1 research outputs found

    Mediterranean Long Shelf-Life Landraces: An Untapped Genetic Resource for Tomato Improvement

    Full text link
    [EN] The Mediterranean long shelf-life (LSL) tomatoes are a group of landraces with a fruit remaining sound up to 6¿12 months after harvest. Most have been selected under semi-arid Mediterranean summer conditions with poor irrigation or rain-fed and thus, are drought tolerant. Besides the convergence in the latter traits, local selection criteria have been very variable, leading to a wide variation in fruit morphology and quality traits. The different soil characteristics and agricultural management techniques across the Mediterranean denote also a wide range of plant adaptive traits to different conditions. Despite the notorious traits for fruit quality and environment adaptation, the LSL landraces have been poorly exploited in tomato breeding programs, which rely basically on wild tomato species. In this review, we describe most of the information currently available for Mediterranean LSL landraces in order to highlight the importance of this genetic resource. We focus on the origin and diversity, the main selective traits, and the determinants of the extended fruit shelf-life and the drought tolerance. Altogether, the Mediterranean LSL landraces are a very valuable heritage to be revalued, since constitutes an alternative source to improve fruit quality and shelf-life in tomato, and to breed for more resilient cultivars under the predicted climate change conditions.This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 727929 (TOMRES), No 634561 (TRADITOM) and No 679796 (TomGEM). Research has been also supported by the Spanish Ministry of Economy and Competitiveness (MINECO) project AGL2013-42364-R (TOMDRO), and the Government of the Balearic Islands grants BIA20/07, BIA07/08, BIA09/12 and AAEE56/2015. MF-P has a pre-doctoral fellowship (FPI/1929/2016) granted by the Government of the Balearic Islands.Conesa, MA.; Fullana-Pericas, M.; Granell Richart, A.; Galmes, J. (2020). Mediterranean Long Shelf-Life Landraces: An Untapped Genetic Resource for Tomato Improvement. Frontiers in Plant Science. 10:1-21. https://doi.org/10.3389/fpls.2019.0165112110Abenavoli, M. R., Longo, C., Lupini, A., Miller, A. J., Araniti, F., Mercati, F., … Sunseri, F. (2016). Phenotyping two tomato genotypes with different nitrogen use efficiency. Plant Physiology and Biochemistry, 107, 21-32. doi:10.1016/j.plaphy.2016.04.021Andreakis, N., Giordano, I., Pentangelo, A., Fogliano, V., Graziani, G., Monti, L. M., & Rao, R. (2004). DNA Fingerprinting and Quality Traits of Corbarino Cherry-like Tomato Landraces. Journal of Agricultural and Food Chemistry, 52(11), 3366-3371. doi:10.1021/jf049963yArah, I. K., Amaglo, H., Kumah, E. K., & Ofori, H. (2015). Preharvest and Postharvest Factors Affecting the Quality and Shelf Life of Harvested Tomatoes: A Mini Review. International Journal of Agronomy, 2015, 1-6. doi:10.1155/2015/478041Bai, Y., & Lindhout, P. (2007). Domestication and Breeding of Tomatoes: What have We Gained and What Can We Gain in the Future? Annals of Botany, 100(5), 1085-1094. doi:10.1093/aob/mcm150Baldina, S., Picarella, M. E., Troise, A. D., Pucci, A., Ruggieri, V., Ferracane, R., … Mazzucato, A. (2016). Metabolite Profiling of Italian Tomato Landraces with Different Fruit Types. Frontiers in Plant Science, 7. doi:10.3389/fpls.2016.00664Bargel, H., & Neinhuis, C. (2004). Altered Tomato (Lycopersicon esculentum Mill.) Fruit Cuticle Biomechanics of a Pleiotropic Non Ripening Mutant. Journal of Plant Growth Regulation, 23(2), 61-75. doi:10.1007/s00344-004-0036-0Bargel, H. (2005). Tomato (Lycopersicon esculentum Mill.) fruit growth and ripening as related to the biomechanical properties of fruit skin and isolated cuticle. Journal of Experimental Botany, 56(413), 1049-1060. doi:10.1093/jxb/eri098Barry, C. S., & Giovannoni, J. J. (2007). Ethylene and Fruit Ripening. Journal of Plant Growth Regulation, 26(2), 143-159. doi:10.1007/s00344-007-9002-yBenites, F. R. G., Maluf, W. R., Paiva, L. V., Faria, M. V., Andrade Junior, V. C., & Gonçalves, L. D. (2010). Teste de alelismo entre os mutantes de amadurecimento alcobaça e non-ripening em tomateiro. Ciência e Agrotecnologia, 34(spe), 1669-1673. doi:10.1590/s1413-70542010000700014Berni, R., Cantini, C., Romi, M., Hausman, J.-F., Guerriero, G., & Cai, G. (2018). Agrobiotechnology Goes Wild: Ancient Local Varieties as Sources of Bioactives. International Journal of Molecular Sciences, 19(8), 2248. doi:10.3390/ijms19082248Blanca, J., Montero-Pau, J., Sauvage, C., Bauchet, G., Illa, E., Díez, M. J., … Cañizares, J. (2015). Genomic variation in tomato, from wild ancestors to contemporary breeding accessions. BMC Genomics, 16(1). doi:10.1186/s12864-015-1444-1Bota, J., Conesa, M. À., Ochogavia, J. M., Medrano, H., Francis, D. M., & Cifre, J. (2014). Characterization of a landrace collection for Tomàtiga de Ramellet (Solanum lycopersicum L.) from the Balearic Islands. Genetic Resources and Crop Evolution, 61(6), 1131-1146. doi:10.1007/s10722-014-0096-3Brewer, M. T., Lang, L., Fujimura, K., Dujmovic, N., Gray, S., & van der Knaap, E. (2006). Development of a Controlled Vocabulary and Software Application to Analyze Fruit Shape Variation in Tomato and Other Plant Species. Plant Physiology, 141(1), 15-25. doi:10.1104/pp.106.077867Brodribb, T. J., & Holbrook, N. M. (2003). Stomatal Closure during Leaf Dehydration, Correlation with Other Leaf Physiological Traits. Plant Physiology, 132(4), 2166-2173. doi:10.1104/pp.103.023879Brodribb, T. J., Feild, T. S., & Jordan, G. J. (2007). Leaf Maximum Photosynthetic Rate and Venation Are Linked by Hydraulics. Plant Physiology, 144(4), 1890-1898. doi:10.1104/pp.107.101352Brodribb, T. J., Feild, T. S., & Sack, L. (2010). Viewing leaf structure and evolution from a hydraulic perspective. Functional Plant Biology, 37(6), 488. doi:10.1071/fp10010Brugarolas, M., Martínez-Carrasco, L., Martínez-Poveda, A., & Ruiz-Martínez, J. J. (2009). A competitive strategy for vegetable products: traditional varieties of tomato in the local market. Spanish Journal of Agricultural Research, 7(2), 294. doi:10.5424/sjar/2009072-420Villa, T. C. C., Maxted, N., Scholten, M., & Ford-Lloyd, B. (2005). Defining and identifying crop landraces. Plant Genetic Resources, 3(3), 373-384. doi:10.1079/pgr200591Casa, R., & Rouphael, Y. (2014). Effects of partial root-zone drying irrigation on yield, fruit quality, and water-use efficiency in processing tomato. The Journal of Horticultural Science and Biotechnology, 89(4), 389-396. doi:10.1080/14620316.2014.11513097Casañas, F., Simó, J., Casals, J., & Prohens, J. (2017). Toward an Evolved Concept of Landrace. Frontiers in Plant Science, 08. doi:10.3389/fpls.2017.00145Casals, J., Cebolla-Cornejo, J., Roselló, S., Beltrán, J., Casañas, F., & Nuez, F. (2011). Long-term postharvest aroma evolution of tomatoes with the alcobaça (alc) mutation. European Food Research and Technology, 233(2), 331-342. doi:10.1007/s00217-011-1517-6Casals, J., Pascual, L., Cañizares, J., Cebolla-Cornejo, J., Casañas, F., & Nuez, F. (2011). Genetic basis of long shelf life and variability into Penjar tomato. Genetic Resources and Crop Evolution, 59(2), 219-229. doi:10.1007/s10722-011-9677-6Missio, J. C., Renau, R. M., Artigas, F. C., & Cornejo, J. C. (2015). Sugar-and-acid profile of Penjar tomatoes and its evolution during storage. Scientia Agricola, 72(4), 314-321. doi:10.1590/0103-9016-2014-0311Causse, M., Friguet, C., Coiret, C., Lépicier, M., Navez, B., Lee, M., … Grandillo, S. (2010). Consumer Preferences for Fresh Tomato at the European Scale: A Common Segmentation on Taste and Firmness. Journal of Food Science, 75(9), S531-S541. doi:10.1111/j.1750-3841.2010.01841.xCebolla-Cornejo, J., Roselló, S., & Nuez, F. (2013). Phenotypic and genetic diversity of Spanish tomato landraces. Scientia Horticulturae, 162, 150-164. doi:10.1016/j.scienta.2013.07.044Condon, A., Farquhar, G., & Richards, R. (1990). Genotypic Variation in Carbon Isotope Discrimination and Transpiration Efficiency in Wheat. Leaf Gas Exchange and Whole Plant Studies. Functional Plant Biology, 17(1), 9. doi:10.1071/pp9900009Conesa, M. À., Galmés, J., Ochogavía, J. M., March, J., Jaume, J., Martorell, A., … Cifre, J. (2014). The postharvest tomato fruit quality of long shelf-life Mediterranean landraces is substantially influenced by irrigation regimes. Postharvest Biology and Technology, 93, 114-121. doi:10.1016/j.postharvbio.2014.02.014Corrado, G., Caramante, M., Piffanelli, P., & Rao, R. (2014). Genetic diversity in Italian tomato landraces: Implications for the development of a core collection. Scientia Horticulturae, 168, 138-144. doi:10.1016/j.scienta.2014.01.027Cortés-Olmos, C., Valcárcel, J. V., Roselló, J., Díez, M. J., & Cebolla-Cornejo, J. (2015). Traditional Eastern Spanish varieties of tomato. Scientia Agricola, 72(5), 420-431. doi:10.1590/0103-9016-2014-0322D’Esposito, D., Ferriello, F., Molin, A. D., Diretto, G., Sacco, A., Minio, A., … Ercolano, M. R. (2017). Unraveling the complexity of transcriptomic, metabolomic and quality environmental response of tomato fruit. BMC Plant Biology, 17(1). doi:10.1186/s12870-017-1008-4Daunay, M.-C., Laterrot, H., & Janick, J. (2007). ICONOGRAPHY OF THE SOLANACEAE FROM ANTIQUITY TO THE XVIITH CENTURY: A RICH SOURCE OF INFORMATION ON GENETIC DIVERSITY AND USES. Acta Horticulturae, (745), 59-88. doi:10.17660/actahortic.2007.745.3Dias, T. J. M., Maluf, W. R., Faria, M. V., Freitas, J. A. de, Gomes, L. A. A., Resende, J. T. V., & Azevedo, S. M. de. (2003). Alcobaça allele and genotypic backgrounds affect yield and fruit shelf life of tomato hybrids. Scientia Agricola, 60(2), 269-275. doi:10.1590/s0103-90162003000200010Domínguez, E., Cuartero, J., & Heredia, A. (2011). An overview on plant cuticle biomechanics. Plant Science, 181(2), 77-84. doi:10.1016/j.plantsci.2011.04.016Dwivedi, S. L., Ceccarelli, S., Blair, M. W., Upadhyaya, H. D., Are, A. K., & Ortiz, R. (2016). Landrace Germplasm for Improving Yield and Abiotic Stress Adaptation. Trends in Plant Science, 21(1), 31-42. doi:10.1016/j.tplants.2015.10.012Elia, A., & Santamaria, P. (2013). Biodiversity in vegetable crops, a heritage to save: the case of Puglia region. Italian Journal of Agronomy, 8(1), 4. doi:10.4081/ija.2013.e4Ercolano, M., Sacco, A., Ferriello, F., D’Alessandro, R., Tononi, P., Traini, A., … Frusciante, L. (2014). Patchwork sequencing of tomato San Marzano and Vesuviano varieties highlights genome-wide variations. BMC Genomics, 15(1), 138. doi:10.1186/1471-2164-15-138FAIRCHILD, D. (1927). THE TOMATO TERRACES OF BAÑALBUFAR. Journal of Heredity, 18(6), 245-251. doi:10.1093/oxfordjournals.jhered.a102861Farquhar, G., O’Leary, M., & Berry, J. (1982). On the Relationship Between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves. Functional Plant Biology, 9(2), 121. doi:10.1071/pp9820121Fattore, M., Montesano, D., Pagano, E., Teta, R., Borrelli, F., Mangoni, A., … Albrizio, S. (2016). Carotenoid and flavonoid profile and antioxidant activity in «Pomodorino Vesuviano» tomatoes. Journal of Food Composition and Analysis, 53, 61-68. doi:10.1016/j.jfca.2016.08.008Figàs, M. R., Prohens, J., Raigón, M. D., Fita, A., García-Martínez, M. D., Casanova, C., … Soler, S. (2015). Characterization of composition traits related to organoleptic and functional quality for the differentiation, selection and enhancement of local varieties of tomato from different cultivar groups. Food Chemistry, 187, 517-524. doi:10.1016/j.foodchem.2015.04.083Figàs, M. R., Prohens, J., Raigón, M. D., Pereira-Dias, L., Casanova, C., García-Martínez, M. D., … Soler, S. (2018). Insights Into the Adaptation to Greenhouse Cultivation of the Traditional Mediterranean Long Shelf-Life Tomato Carrying the alc Mutation: A Multi-Trait Comparison of Landraces, Selections, and Hybrids in Open Field and Greenhouse. Frontiers in Plant Science, 9. doi:10.3389/fpls.2018.01774Flexas, J., Niinemets, Ü., Gallé, A., Barbour, M. M., Centritto, M., Diaz-Espejo, A., … Medrano, H. (2013). Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency. Photosynthesis Research, 117(1-3), 45-59. doi:10.1007/s11120-013-9844-zFlexas, J., Scoffoni, C., Gago, J., & Sack, L. (2013). Leaf mesophyll conductance and leaf hydraulic conductance: an introduction to their measurement and coordination. Journal of Experimental Botany, 64(13), 3965-3981. doi:10.1093/jxb/ert319Foolad, M. R., & Panthee, D. R. (2012). Marker-Assisted Selection in Tomato Breeding. Critical Reviews in Plant Sciences, 31(2), 93-123. doi:10.1080/07352689.2011.616057Foolad, M. R. (2007). Genome Mapping and Molecular Breeding of Tomato. International Journal of Plant Genomics, 2007, 1-52. doi:10.1155/2007/64358Franks, P. J., & Beerling, D. J. (2009). Maximum leaf conductance driven by CO2 effects on stomatal size and density over geologic time. Proceedings of the National Academy of Sciences, 106(25), 10343-10347. doi:10.1073/pnas.0904209106Frison, E. A., Cherfas, J., & Hodgkin, T. (2011). Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security. Sustainability, 3(1), 238-253. doi:10.3390/su3010238Fullana-Pericas, M., Conesa, M. A., Soler, S., Ribas-Carbo, M., Granell, A., & Galmes, J. (2017). Variations of leaf morphology, photosynthetic traits and water-use efficiency in Western-Mediterranean tomato landraces. Photosynthetica, 55(1), 121-133. doi:10.1007/s11099-016-0653-4Fullana-Pericàs, M., Conesa, M. À., Douthe, C., El Aou-ouad, H., Ribas-Carbó, M., & Galmés, J. (2019). Tomato landraces as a source to minimize yield losses and improve fruit quality under water deficit conditions. Agricultural Water Management, 223, 105722. doi:10.1016/j.agwat.2019.105722GALMÉS, J., CONESA, M. À., OCHOGAVÍA, J. M., PERDOMO, J. A., FRANCIS, D. M., RIBAS-CARBÓ, M., … CIFRE, J. (2010). Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant, Cell & Environment, 34(2), 245-260. doi:10.1111/j.1365-3040.2010.02239.xGALMÉS, J., OCHOGAVÍA, J. M., GAGO, J., ROLDÁN, E. J., CIFRE, J., & CONESA, M. À. (2012). Leaf responses to drought stress in Mediterranean accessions ofSolanum lycopersicum: anatomical adaptations in relation to gas exchange parameters. Plant, Cell & Environment, 36(5), 920-935. doi:10.1111/pce.12022García-Martínez, S., Corrado, G., Ruiz, J. J., & Rao, R. (2012). Diversity and structure of a sample of traditional Italian and Spanish tomato accessions. Genetic Resources and Crop Evolution, 60(2), 789-798. doi:10.1007/s10722-012-9876-9Garcia-Mier, L., Jimenez-Garcia, S. N., Chapa-Oliver, A. M., Mejia-Teniente, L., Ocampo-Velazquez, R. V., Rico-García, E., … Torres-Pacheco, I. (2014). Strategies for Sustainable Plant Food Production: Facing the Current Agricultural Challenges—Agriculture for Today and Tomorrow. Biosystems Engineering: Biofactories for Food Production in the Century XXI, 1-50. doi:10.1007/978-3-319-03880-3_1Giorio, P., Guida, G., Mistretta, C., Sellami, M. H., Oliva, M., Punzo, P., … Albrizio, R. (2018). Physiological, biochemical and molecular responses to water stress and rehydration in Mediterranean adapted tomato landraces. Plant Biology, 20(6), 995-1004. doi:10.1111/plb.12891Giovannoni, J., Nguyen, C., Ampofo, B., Zhong, S., & Fei, Z. (2017). The Epigenome and Transcriptional Dynamics of Fruit Ripening. Annual Review of Plant Biology, 68(1), 61-84. doi:10.1146/annurev-arplant-042916-040906Giovannoni, J. J. (2007). Fruit ripening mutants yield insights into ripening control. Current Opinion in Plant Biology, 10(3), 283-289. doi:10.1016/j.pbi.2007.04.008Guida, G., Sellami, M. H., Mistretta, C., Oliva, M., Buonomo, R., De Mascellis, R., … Giorio, P. (2017). Agronomical, physiological and fruit quality responses of two Italian long-storage tomato landraces under rain-fed and full irrigation conditions. Agricultural Water Management, 180, 126-135. doi:10.1016/j.agwat.2016.11.004Kirda, C., Cetin, M., Dasgan, Y., Topcu, S., Kaman, H., Ekici, B., … Ozguven, A. I. (2004). Yield response of greenhouse grown tomato to partial root drying and conventional deficit irrigation. Agricultural Water Management, 69(3), 191-201. doi:10.1016/j.agwat.2004.04.008Klee, H. J., & Giovannoni, J. J. (2011). Genetics and Control of Tomato Fruit Ripening and Quality Attributes. Annual Review of Genetics, 45(1), 41-59. doi:10.1146/annurev-genet-110410-132507Klee, H. J., & Tieman, D. M. (2013). Genetic challenges of flavor improvement in tomato. Trends in Genetics, 29(4), 257-262. doi:10.1016/j.tig.2012.12.003KOPELIOVITCH, E., MIZRAHI, Y., RABINOWITCH, H. D., & KEDAR, N. (1980). Physiology of the tomato mutant alcobaca. Physiologia Plantarum, 48(2), 307-311. doi:10.1111/j.1399-3054.1980.tb03260.xKopeliovitch, E., Rabinowitch, H. D., Mizrahi, Y., & Kedar, N. (1981). Mode of inheritance of Alcobaca, a tomato fruit-ripening mutant. Euphytica, 30(1), 223-225. doi:10.1007/bf00033685Kosma, D. K., Parsons, E. P., Isaacson, T., Lü, S., Rose, J. K. C., & Jenks, M. A. (2010). Fruit cuticle lipid composition during development in tomato ripening mutants. Physiologia Plantarum, 139(1), 107-117. doi:10.1111/j.1399-3054.2009.01342.xKoutsika-Sotiriou, M., Mylonas, I., Tsivelikas, A., & Traka-Mavrona, E. (2016). Compensation studies on the tomato landrace ‘Tomataki Santorinis’. Scientia Horticulturae, 198, 78-85. doi:10.1016/j.scienta.2015.11.006Kumar, R., Tamboli, V., Sharma, R., & Sreelakshmi, Y. (2018). NAC-NOR mutations in tomato Penjar accessions attenuate multiple metabolic processes and prolong the fruit shelf life. Food Chemistry, 259, 234-244. doi:10.1016/j.foodchem.2018.03.135Labate, J. A., & Robertson, L. D. (2012). Evidence of cryptic introgression in tomato (Solanum lycopersicum L.) based on wild tomato species alleles. BMC Plant Biology, 12(1), 133. doi:10.1186/1471-2229-12-133Landi, S., De Lillo, A., Nurcato, R., Grillo, S., & Esposito, S. (2017). In-field study on traditional Italian tomato landraces: The constitutive activation of the ROS scavenging machinery reduces effects of drought stress. Plant Physiology and Biochemistry, 118, 150-160. doi:10.1016/j.plaphy.2017.06.011Lin, T., Zhu, G., Zhang, J., Xu, X., Yu, Q., Zheng, Z., … Huang, S. (2014). Genomic analyses provide insights into the history of tomato breeding. Nature Genetics, 46(11), 1220-1226. doi:10.1038/ng.3117Lobell, D. B., & Gourdji, S. M. (2012). The Influence of Climate Change on Global Crop Productivity. Plant Physiology, 160(4), 1686-1697. doi:10.1104/pp.112.208298Maamar, B., Maatoug, M., Iriti, M., Dellal, A., & Ait hammou Mohammed. (2015). Physiological effects of ozone exposure on De Colgar and Rechaiga II tomato (Solanum lycopersicum L.) cultivars. Environmental Science and Pollution Research, 22(16), 12124-12132. doi:10.1007/s11356-015-4490-yManzo, N., Pizzolongo, F., Meca, G., Aiello, A., Marchetti, N., & Romano, R. (2018). Comparative Chemical Compositions of Fresh and Stored Vesuvian PDO «Pomodorino Del Piennolo» Tomato and the Ciliegino Variety. Molecules, 23(11), 2871. doi:10.3390/molecules23112871Mazzucato, A., Papa, R., Bitocchi, E., Mosconi, P., Nanni, L., Negri, V., … Veronesi, F. (2008). Genetic diversity, structure and marker-trait associations in a collection of Italian tomato (Solanum lycopersicum L.) landraces. Theoretical and Applied Genetics, 116(5), 657-669. doi:10.1007/s00122-007-0699-6Mercati, F., Longo, C., Poma, D., Araniti, F., Lupini, A., Mammano, M. M., … Sunseri, F. (2014). Genetic variation of an Italian long shelf-life tomato (Solanum lycopersicon L.) collection by using SSR and morphological fruit traits. Genetic Resources and Crop Evolution, 62(5), 721-732. doi:10.1007/s10722-014-0191-5Meyer, R. S., DuVal, A. E., & Jensen, H. R. (2012). Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. New Phytologist, 196(1), 29-48. doi:10.1111/j.1469-8137.2012.04253.xMirouze, M., & Paszkowski, J. (2011). Epigenetic contribution to stress adaptation in plants. Current Opinion in Plant Biology, 14(3), 267-274. doi:10.1016/j.pbi.2011.03.004Moore, S. (2002). Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. Journal of Experimental Botany, 53(377), 2023-2030. doi:10.1093/jxb/erf057Mutschler, M., Guttieri, M., Kinzer, S., Grierson, D., & Tucker, G. (1988). Changes in ripening-related processes in tomato conditioned by the alc mutant. Theoretical and Applied Genetics, 76(2), 285-292. doi:10.1007/bf00257857Mutschler, M. A., Wolfe, D. W., Cobb, E. D., & Yourstone, K. S. (1992). Tomato Fruit Quality and Shelf Life in Hybrids Heterozygous for the alc Ripening Mutant. HortScience, 27(4), 352-355. doi:10.21273/hortsci.27.4.352Nuccio, M. L., Paul, M., Bate, N. J., Cohn, J., & Cutler, S. R. (2018). Where are the drought tolerant crops? An assessment of more than two decades of plant biotechnology effort in crop improvement. Plant Science, 273, 110-119. doi:10.1016/j.plantsci.2018.01.020Onoda, Y., Wright, I. J., Evans, J. R., Hikosaka, K., Kitajima, K., Niinemets, Ü., … Westoby, M. (2017). Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytologist, 214(4), 1447-1463. doi:10.1111/nph.14496Osorio, S., Scossa, F., & Fernie, A. R. (2013). Molecular regulation of fruit ripening. Frontiers in Plant Science, 4. doi:10.3389/fpls.2013.00198Panthee, D. R., Labate, J. A., McGrath, M. T., Breksa, A. P., & Robertson, L. D. (2013). Genotype and environmental interaction for fruit quality traits in vintage tomato varieties. Euphytica, 193(2), 169-182. doi:10.1007/s10681-013-0895-1Patanè, C., & Cosentino, S. L. (2010). Effects of soil water deficit
    corecore