87 research outputs found

    A Metabolomic Approach to the Study of Wine Micro-Oxygenation

    Get PDF
    Wine micro-oxygenation is a globally used treatment and its effects were studied here by analysing by untargeted LC-MS the wine metabolomic fingerprint. Eight different procedural variations, marked by the addition of oxygen (four levels) and iron (two levels) were applied to Sangiovese wine, before and after malolactic fermentation

    Metabolic constituents of grapevine and grape-derived products

    Get PDF
    The numerous uses of the grapevine fruit, especially for wine and beverages, have made it one of the most important plants worldwide. The phytochemistry of grapevine is rich in a wide range of compounds. Many of them are renowned for their numerous medicinal uses. The production of grapevine metabolites is highly conditioned by many factors like environment or pathogen attack. Some grapevine phytoalexins have gained a great deal of attention due to their antimicrobial activities, being also involved in the induction of resistance in grapevine against those pathogens. Meanwhile grapevine biotechnology is still evolving, thanks to the technological advance of modern science, and biotechnologists are making huge efforts to produce grapevine cultivars of desired characteristics. In this paper, important metabolites from grapevine and grape derived products like wine will be reviewed with their health promoting effects and their role against certain stress factors in grapevine physiology

    Characterization of pigments from different high speed countercurrent chromatography wine fractions

    No full text
    International audienceA red wine, made from Cabernet Sauvignon (60%) and Tannat (40%) cultivars, was fractionated by high speed countercurrent chromatography (HSCCC). The biphasic solvent system consisting of tertbutyl methyl ether/n-butanol/acetonitrile/water (2/2/1/5, acidified with 0.1% trifluoroacetic acid) was chosen for its demonstrated efficiency in separating anthocyanins. The different native and derived anthocyanins were identified on the basis of their UV-visible spectra, their elution time on reversed-phase high-performance liquid chromatography (HPLC), and their mass spectra, before and after thiolysis. The HSCCC method allowed the separation of different families of anthocyanin-derived pigments that were eluted in different fractions according to their structures. The hydrosoluble fraction was almost devoid of native anthocyanins. Further characterization (glucose quantification, UV-visible absorbance measurements) indicated that it contained flavanol and anthocyanin copolymers in which parts of the anthocyanin units were in colorless forms. Pigments in the hydrosoluble fraction showed increased resistance to sulfite bleaching and to the nucleophilic attack of water

    Assessment of the molecular weight distribution of tannin fractions through MALDI-TOF MS analysis of protein-tannin complexes

    Get PDF
    An innovative mass spectrometry method was developed for determining mass distributions of tannin fractions that cannot be approached through direct MALDI-TOF analysis. It was applied to three procyanidin fractions with average degrees of polymerizations = 3, 9, and 28, respectively, and one gallotannin fraction (Tara tannin). The proposed approach consists of MALDI-TOF analysis of the soluble complexes formed between these tannin fractions and bovine serum albumin (BSA). Complexes were detected as an unresolved "hump" following the BSA signal, and spectra were mathematically processed to determine the parameters relative to the protein-tannin complexes, which are the number-average molecular weight (Mn), the weight-average molecular weight (Mw), and the polydispersity index (PI) for each tannin fraction. Regarding condensed tannins, results are consistent with those of the standard method (thiolysis followed by HPLC separation) for all tested fractions. The method was successfully applied to a hydrolyzable tannin fraction but no standard method is available for comparison.Comite Interprofessionnel des Vins de Champagne (CIVC) and Moet & Chandon Compan

    Combination of several mass spectrometry ionization modes: A multiblock analysis for a rapid characterization of the red wine polyphenolic composition

    No full text
    cited By 11International audienceIn the present study, direct flow injection mass spectrometry was investigated for rapid characterization of the polyphenolic composition of red wines. Atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) (in both positive and negative ion modes) have been simultaneously used for a more comprehensive analysis of the samples studied. In this way, four mass spectra have been recorded for each wine. Each spectrum was considered as a fingerprint related to the chemical composition. This methodology was applied to a large number of Beaujolais wines from different grades and different vintages.This data set was processed using a chemometrical multiblock analysis, which allowed to synthesize the whole information collected. The results obtained showed that the wine fingerprints address the composition of the main polyphenolic compounds present in the red wines and can discriminate groups of wines showing different polyphenolic compositions. Multiblock analysis appears as a very promising tool to deal with several data tables of multivariate signals in order to define, by combining the whole information, the best operating protocol according to the desired analytical objectives. © 2010 Elsevier B.V
    corecore